Chapter 2: Problem 250
The Wind Map The website hint.fm/wind/ shows the current wind patterns across the US. In order to generate this map, what two variables are being recorded at weather stations across the US?
Chapter 2: Problem 250
The Wind Map The website hint.fm/wind/ shows the current wind patterns across the US. In order to generate this map, what two variables are being recorded at weather stations across the US?
All the tools & learning materials you need for study success - in one app.
Get started for freeDonating Blood to Grandma? Can young blood help old brains? Several studies \(^{32}\) in mice indicate that it might. In the studies, old mice (equivalent to about a 70 -year-old person) were randomly assigned to receive blood plasma either from a young mouse (equivalent to about a 25 -year-old person) or another old mouse. The mice receiving the young blood showed multiple signs of a reversal of brain aging. One of the studies \(^{33}\) measured exercise endurance using maximum treadmill runtime in a 90 -minute window. The number of minutes of runtime are given in Table 2.17 for the 17 mice receiving plasma from young mice and the 13 mice receiving plasma from old mice. The data are also available in YoungBlood. $$ \begin{aligned} &\text { Table 2.17 Number of minutes on a treadmill }\\\ &\begin{array}{|l|lllllll|} \hline \text { Young } & 27 & 28 & 31 & 35 & 39 & 40 & 45 \\ & 46 & 55 & 56 & 59 & 68 & 76 & 90 \\ & 90 & 90 & 90 & & & & \\ \hline \text { Old } & 19 & 21 & 22 & 25 & 28 & 29 & 29 \\ & 31 & 36 & 42 & 50 & 51 & 68 & \\ \hline \end{array} \end{aligned} $$ (a) Calculate \(\bar{x}_{Y},\) the mean number of minutes on the treadmill for those mice receiving young blood. (b) Calculate \(\bar{x}_{O},\) the mean number of minutes on the treadmill for those mice receiving old blood. (c) To measure the effect size of the young blood, we are interested in the difference in means \(\bar{x}_{Y}-\bar{x}_{O} .\) What is this difference? Interpret the result in terms of minutes on a treadmill. (d) Does this data come from an experiment or an observational study? (e) If the difference is found to be significant, can we conclude that young blood increases exercise endurance in old mice? (Researchers are just beginning to start similar studies on humans.)
Two variables are defined, a regression equation is given, and one data point is given. (a) Find the predicted value for the data point and compute the residual. (b) Interpret the slope in context. (c) Interpret the intercept in context, and if the intercept makes no sense in this context, explain why. \(\mathrm{Hgt}=\) height in inches, Age \(=\) age in years of a child. \(\widehat{H g t}=24.3+2.74(\) Age \() ;\) data point is a child 12 years old who is 60 inches tall.
Create Your Own: Bubble Plot Using any of the datasets that come with this text that include at least three quantitative variables (or any other dataset that you find interesting and that meets this condition), use statistical software to create a bubble plot of the data. Indicate the dataset, the cases, and the variables that you use. Specify which variable represents the size of the bubble. Comment (in context) about any interesting features revealed in your plot.
Does pre-season success indicate regular season success in the US National Football League? We looked at the number of preseason wins and regular season wins for all 32 NFL teams over a 10 -year span. (a) What would a positive association imply about the relationship between pre-season and regular season success in the NFL? What would a negative association imply? (b) The correlation between these two variables is \(r=0.067\). What does this correlation tell you about the strength of a linear relationship between these two variables?
In Exercise 1.23, we learned of a study to determine whether just one session of cognitive behavioral therapy can help people with insomnia. In the study, forty people who had been diagnosed with insomnia were randomly divided into two groups of 20 each. People in one group received a one-hour cognitive behavioral therapy session while those in the other group received no treatment. Three months later, 14 of those in the therapy group reported sleep improvements while only 3 people in the other group reported improvements. (a) Create a two-way table of the data. Include totals across and down. (b) How many of the 40 people in the study reported sleep improvement? (c) Of the people receiving the therapy session, what proportion reported sleep improvements? (d) What proportion of people who did not receive therapy reported sleep improvements? (e) If we use \(\hat{p}_{T}\) to denote the proportion from part (c) and use \(\hat{p}_{N}\) to denote the proportion from part (d), calculate the difference in proportion reporting sleep improvements, \(\hat{p}_{T}-\hat{p}_{N}\) between those getting therapy and those not getting therapy.
What do you think about this solution?
We value your feedback to improve our textbook solutions.