Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Sketch a curve showing a distribution that is symmetric and bell-shaped and has approximately the given mean and standard deviation. In each case, draw the curve on a horizontal axis with scale 0 to 10. Mean 5 and standard deviation 0.5

Short Answer

Expert verified
First, a horizontal scale from 0 to 10 was set. The curve was drawn so that the peak corresponds to the mean value (5), and the width of the bell-like figure is influenced by the standard deviation (approximately 0.5). The curve was then finished symmetrically, tapering off to approach the horizontal axis without touching it.

Step by step solution

01

- Set Up the Horizontal Axis

Draw a horizontal line from 0 to 10. This line will represent the axis in which we will draw the curve. Then, divide this line into 10 equal segments since the maximum value is the 10. Consequently, each segment represents one unit.
02

- Draw the Center of the Curve

From the mean value, which is 5, draw a vertical line. This will be the location of the center of the curve or where the curve reaches its peak (as it's the maximum point in a Normal Distribution).
03

- Draw the Curves flanks

Starting from the peak of the curve at the mean, draw the descending flanks of the curve on both sides. The width of the curve will be determined by the standard deviation, which is 0.5 in this case. The rule of thumb is that approximately 68% of the data lies within 1 standard deviation from the mean in a Normal Distribution curve. Therefore, at approximately 4.5 and 5.5 on the scale, the curve should transition from its descending slope to nearly horizontal. The exact positioning of these points requires an understanding of probability and mathematical calculation.
04

- Completing the Curve

After drawing the descending flanks, complete the drawing by creating a curve that tapers off and approaches, but never quite reaches, the horizontal axis. To make the curve symmetric, make sure both sides of it (right and left) look the same.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When honeybee scouts find a food source or a nice site for a new home, they communicate the location to the rest of the swarm by doing a "waggle dance." 74 They point in the direction of the site and dance longer for sites farther away. The rest of the bees use the duration of the dance to predict distance to the site. Table 2.32 Duration of \(a\) honeybee waggle dance to indicate distance to the source $$\begin{array}{cc} \hline \text { Distance } & \text { Duration } \\ \hline 200 & 0.40 \\\250 & 0.45 \\ 500 & 0.95 \\\950 & 1.30 \\ 1950 & 2.00 \\\3500 & 3.10 \\\4300 & 4.10 \\\\\hline\end{array}$$ Table 2.32 shows the distance, in meters, and the duration of the dance, in seconds, for seven honeybee scouts. \(^{75}\) This information is also given in HoneybeeWaggle. (a) Which is the explanatory variable? Which is the response variable? (b) Figure 2.70 shows a scatterplot of the data. Does there appear to be a linear trend in the data? If so, is it positive or negative? (c) Use technology to find the correlation between the two variables. (d) Use technology to find the regression line to predict distance from duration. (e) Interpret the slope of the line in context. (f) Predict the distance to the site if a honeybee does a waggle dance lasting 1 second. Lasting 3 seconds.

Two variables are defined, a regression equation is given, and one data point is given. (a) Find the predicted value for the data point and compute the residual. (b) Interpret the slope in context. (c) Interpret the intercept in context, and if the intercept makes no sense in this context, explain why. \(B A C=\) blood alcohol content (\% of alcohol in the blood), Drinks \(=\) number of alcoholic drinks. \(\widehat{B A C}=-0.0127+0.018(\) Drinks \() ;\) data point is an individual who consumed 3 drinks and had a \(B A C\) of 0.08.

From the StudentSurvey dataset, select any categorical variable and select any quantitative variable. Use technology to create side-by-side boxplots to examine the relationship between the variables. State which two variables you are using and describe what you see in the boxplots. In addition, use technology to compute comparative summary statistics and compare means and standard deviations for the different groups.

Indicate whether the five number summary corresponds most likely to a distribution that is skewed to the left, skewed to the right, or symmetric. (0,15,22,24,27)

Create Your Own: Bubble Plot Using any of the datasets that come with this text that include at least three quantitative variables (or any other dataset that you find interesting and that meets this condition), use statistical software to create a bubble plot of the data. Indicate the dataset, the cases, and the variables that you use. Specify which variable represents the size of the bubble. Comment (in context) about any interesting features revealed in your plot.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free