Chapter 11: Problem 144
Find the specified areas for a normal density. (a) The area below 0.21 on a \(N(0.3,0.04)\) distribution (b) The area above 472 on a \(N(500,25)\) distribution (c) The area between 8 and 10 on a \(N(15,6)\) distribution
Chapter 11: Problem 144
Find the specified areas for a normal density. (a) The area below 0.21 on a \(N(0.3,0.04)\) distribution (b) The area above 472 on a \(N(500,25)\) distribution (c) The area between 8 and 10 on a \(N(15,6)\) distribution
All the tools & learning materials you need for study success - in one app.
Get started for freeHeights of Men in the US Heights of adult males in the US are approximately normally distributed with mean 70 inches \((5 \mathrm{ft} 10 \mathrm{in})\) and standard deviation 3 inches. (a) What proportion of US men are between \(5 \mathrm{ft}\) 8 in and \(6 \mathrm{ft}\) tall \((68\) and 72 inches, respectively)? (b) If a man is at the 10 th percentile in height, how tall is he?
Find the specified areas for a \(N(0,1)\) density. (a) The area below \(z=0.8\) (b) The area above \(z=1.2\) (c) The area between \(z=-1.75\) and \(z=-1.25\)
In Exercises \(\mathrm{P} .74\) to \(\mathrm{P} .77\), fill in the \(?\) to make \(p(x)\) a probability function. If not possible, say so. $$ \begin{array}{lccc} \hline x & 1 & 2 & 3 \\ \hline p(x) & 0.5 & 0.6 & ? \\ \hline \end{array} $$
A friend makes three pancakes for breakfast. One of the pancakes is burned on both sides, one is burned on only one side, and the other is not burned on either side. You are served one of the pancakes at random, and the side facing you is burned. What is the probability that the other side is burned? (Hint: Use conditional probability.)
\(\mathbf{P . 1 0 8}\) Find \(P(X=2)\) if \(X\) is a binomial random variable with \(n=6\) and \(p=0.3\). if \(X\) is a binomial random variable with \(n=8\) and \(p=0.9\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.