Chapter 11: Problem 102
In Exercises \(\mathrm{P} .100\) to \(\mathrm{P} .107,\) calculate the requested quantity. $$ 8 ! $$
Chapter 11: Problem 102
In Exercises \(\mathrm{P} .100\) to \(\mathrm{P} .107,\) calculate the requested quantity. $$ 8 ! $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the information that, for events \(\mathrm{A}\) and \(\mathrm{B},\) we have \(P(A)=0.4, P(B)=0.3,\) and \(P(A\) and \(B)=0.1.\) Are events \(A\) and \(B\) independent?
Ask you to convert an area from one normal distribution to an equivalent area for a different normal distribution. Draw sketches of both normal distributions, find and label the endpoints, and shade the regions on both curves. The area above 2.1 for a standard normal distribution converted to a \(N(500,80)\) distribution
Approximately \(7 \%\) of men and \(0.4 \%\) of women are red-green color-blind (as in Exercise P.38). Assume that a statistics class has 15 men and 25 women. (a) What is the probability that nobody in the class is red-green color-blind? (b) What is the probability that at least one person in the class is red-green color-blind? (c) If a student from the class is selected at random, what is the probability that he or she will be redgreen color-blind?
In Exercises \(\mathrm{P} .78\) to \(\mathrm{P} .81,\) use the probability function given in the table to calculate: (a) The mean of the random variable (b) The standard deviation of the random variable $$ \begin{array}{lcccc} \hline x & 10 & 12 & 14 & 16 \\ \hline p(x) & 0.25 & 0.25 & 0.25 & 0.25 \\ \hline \end{array} $$
Empirical Rule for Normal Distributions Pick any positive values for the mean and the standard deviation of a normal distribution. Use your selection of a normal distribution to answer the questions below. The results of parts (a) to (c) form what is often called the Empirical Rule for the standard deviation in a normal distribution. (a) Verify that about \(95 \%\) of the values fall within two standard deviations of the mean. (b) What proportion of values fall within one standard deviation of the mean? (c) What proportion of values fall within three standard deviations of the mean? (d) Will the answers to (b) and (c) be the same for any normal distribution? Explain why or why not.
What do you think about this solution?
We value your feedback to improve our textbook solutions.