Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that county planners are interested in learning about the proportion of county residents who would pay a fee for a curbside recycling service if the county were to offer this service. Two different people independently selected random samples of county residents and used their sample data to construct the following confidence intervals for the proportion who would pay for curbside recycling: Interval 1:(0.68,0.74) Interval 2:(0.68,0.72) a. Explain how it is possible that the two confidence intervals are not centered in the same place. b. Which of the two intervals conveys more precise information about the value of the population proportion? c. If both confidence intervals are associated with a \(95 \%\) confidence level, which confidence interval was based on the smaller sample size? How can you tell? d. If both confidence intervals were based on the same sample size, which interval has the higher confidence level? How can you tell?

Short Answer

Expert verified
The centers of confidence intervals may differ due to the independent random selection of samples. Interval 2, being narrower, presents a more precise population proportion. With a \(95\% \) confidence level, Interval 1 was likely derived from a smaller sample size, as wider intervals usually indicate more variability due to a smaller sample. If the sample size was identical for both intervals, Interval 2 would have a higher confidence level due to its reduced width.

Step by step solution

01

Explain differing center points

The centers of two confidence intervals can differ because samples were taken independently. Even though each is a random sample of the general population, differences in the individuals selected for each sample can lead to variability in the sample proportions and, henceforth, the centres of the confidence intervals.
02

Comparing precision

Interval 2 (0.68, 0.72) can be said to provide more precise information about the population proportion. The reasoning for this is that it is narrower than Interval 1 (0.68, 0.74), meaning there is less uncertainty about the true population proportion.
03

Determining sample size

As the confidence level for both intervals is \(95\% \), the interval with the wider range (Interval 1) was founded on a smaller sample size. The range of a confidence interval is inversely related to the sample size; as the sample size decreases, the variability increases, leading to a broader confidence interval.
04

Comparing Confidence Levels

If both intervals were based on the same sample size, Interval 2 (0.68, 0.72) would have a higher confidence level. The reason being that with a narrower interval, we are more certain about the population proportion falling within this particular range.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Will \(\hat{p}\) from a random sample from a population with \(60 \%\) successes tend to be closer to 0.6 for a sample size of \(n=400\) or a sample size of \(n=800 ?\) Provide an explanation for your choice.

A large online retailer is interested in learning about the proportion of customers making a purchase during a particular month who were satisfied with the online ordering process. A random sample of 600 of these customers included 492 who indicated they were satisfied. For each of the three following statements, indicate if the statement is correct or incorrect. If the statement is incorrect, explain what makes it incorrect. Statement 1: It is unlikely that the estimate \(\hat{p}=0.82\) differs from the value of the actual population proportion by more than 0.0157 . Statement 2 : It is unlikely that the estimate \(\hat{p}=0.82\) differs from the value of the actual population proportion by more than 0.0307 . Statement 3: The estimate \(\hat{p}=0.82\) will never differ from the value of the actual population proportion by more than 0.0307 .

A researcher wants to estimate the proportion of city residents who favor spending city funds to promote tourism. Would the standard error of the sample proportion \(\hat{p}\) be smaller for random samples of size \(n=100\) or random samples of size \(n=200 ?\)

A researcher wants to estimate the proportion of students enrolled at a university who eat fast food more than three times in a typical week. Would the standard error of the sample proportion \(\hat{p}\) be smaller for random samples of size \(n=50\) or random samples of size \(n=200 ?\)

Consider taking a random sample from a population with \(p=0.25\) a. What is the standard error of \(\hat{p}\) for random samples of size \(400 ?\) b. Would the standard error of \(\hat{p}\) be smaller for random samples of size 200 or samples of size \(400 ?\) c. Does cutting the sample size in half from 400 to 200 double the standard error of \(\hat{p} ?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free