Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The formula used to calculate a large-sample confidence interval for \(p\) is $$ \hat{p} \pm(z \text { critial value }) \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} $$ What is the appropriate \(z\) critical value for each of the following confidence levels? a. \(95 \%\) b. \(98 \%\) c. \(85 \%\)

Short Answer

Expert verified
The z critical values correlate with the confidence levels as follows: For a 95% confidence level, the Z value is 1.96. For a 98% confidence level, it is 2.33. And for an 85% confidence level, it is 1.44.

Step by step solution

01

Understand Critical Value Z

The critical value or Z score corresponds to the confidence level for a parameter, which is often found using a z-table. The level of confidence corresponds to the probability that the confidence interval contains the population parameter. This results in a two-sided confidence level since this probability is split evenly on both sides of the mean.
02

Determine the Z Critical Value for 95% Confidence Level

For a 95% confidence interval, the z critical value is approximately 1.96. This means that if the real parameter of the population is within 1.96 standard deviations from the sample parameter, then the population parameter is within the 95% confidence interval.
03

Determine the Z Critical Value for 98% Confidence Level

For a 98% confidence level, the critical z value is approximately 2.33. This implies that if the population parameter is within 2.33 standard deviations from the sample parameter, this population parameter falls within the 98% confidence interval.
04

Determine the Z Critical Value for 85% Confidence Level

For an 85% confidence level, the critical z value is approximately 1.44. This means that if the population parameter is within 1.44 standard deviations of the sample parameter, the population parameter lies within the 85% confidence interval.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An Associated Press article on potential violent behavior reported the results of a survey of 750 workers who were employed full time (San Luis Obispo Tribune, September 7 , 1999). Of those surveyed, 125 indicated that they were so angered by a coworker during the past year that they felt like hitting the coworker (but didn't). Assuming that it is reasonable to regard this sample as representative of the population of full-time workers, use this information to construct and interpret a \(90 \%\) confidence interval estimate of \(p,\) the proportion of all full-time workers so angered in the last year that they wanted to hit a coworker.

Suppose that 935 smokers each received a nicotine patch, which delivers nicotine to the bloodstream at a much slower rate than cigarettes do. Dosage was decreased to 0 over a 12 -week period. Of these 935 people, 245 were still not smoking 6 months after treatment. Assume this sample is representative of all smokers. a. Use the given information to estimate the proportion of all smokers who, when given this treatment, would refrain from smoking for at least 6 months. b. Verify that the conditions needed in order for the margin of error formula to be appropriate are met. c. Calculate the margin of error. d. Interpret the margin of error in the context of this problem.

One thousand randomly selected adult Americans participated in a survey conducted by the Associated Press (June, 2006). When asked "Do you think it is sometimes justified to lie, or do you think lying is never justified?" \(52 \%\) responded that lying was never justified. When asked about lying to avoid hurting someone's feelings, 650 responded that this was often or sometimes OK. a. Construct and interpret a \(90 \%\) confidence interval for the proportion of adult Americans who would say that lying is never justified. b. Construct and interpret a \(90 \%\) confidence interval for the proportion of adult Americans who think that it is often or sometimes OK to lie to avoid hurting someone's feelings. c. Using the confidence intervals from Parts (a) and (b), comment on the apparent inconsistency in the responses.

Will \(\hat{p}\) from a random sample of size 400 tend to be closer to the actual value of the population proportion when \(p=0.4\) or when \(p=0.7 ?\) Provide an explanation for your choice.

The article "Viewers Speak Out Against Reality TV" (Associated Press, September 12,2005\()\) included the following statement: "Few people believe there's much reality in reality TV: a total of \(82 \%\) said the shows are either 'totally made up' or 'mostly distorted."" This statement was based on a survey of 1,002 randomly selected adults. Calculate and interpret the margin of error for the reported percentage.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free