Chapter 9: Problem 45
For each of the following choices, explain which would result in a narrower large-sample confidence interval for \(p\) : a. \(95 \%\) confidence level or \(99 \%\) confidence level b. \(n=200\) or \(n=500\)
Chapter 9: Problem 45
For each of the following choices, explain which would result in a narrower large-sample confidence interval for \(p\) : a. \(95 \%\) confidence level or \(99 \%\) confidence level b. \(n=200\) or \(n=500\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFor estimating a population characteristic, why is an unbiased statistic with a small standard error preferred over an unbiased statistic with a larger standard error?
The article "Kids Digital Day: Almost 8 Hours" (USA Today, January 20,2010 ) summarized a national survey of 2,002 Americans ages 8 to 18 . The sample was selected to be representative of Americans in this age group. a. Of those surveyed, 1,321 reported owning a cell phone. Use this information to construct and interpret a \(90 \%\) confidence interval for the proportion of all Americans ages 8 to 18 who own a cell phone. b. Of those surveyed, 1,522 reported owning an MP3 music player. Use this information to construct and interpret a \(90 \%\) confidence interval for the proportion of all Americans ages 8 to 18 who own an MP3 music player. c. Explain why the confidence interval from Part (b) is narrower than the confidence interval from Part (a) even though the confidence levels and the sample sizes used to calculate the two intervals were the same.
Consider taking a random sample from a population with \(p=0.25\) a. What is the standard error of \(\hat{p}\) for random samples of size \(400 ?\) b. Would the standard error of \(\hat{p}\) be smaller for random samples of size 200 or samples of size \(400 ?\) c. Does cutting the sample size in half from 400 to 200 double the standard error of \(\hat{p} ?\)
A researcher wants to estimate the proportion of students enrolled at a university who eat fast food more than three times in a typical week. Would the standard error of the sample proportion \(\hat{p}\) be smaller for random samples of size \(n=50\) or random samples of size \(n=200 ?\)
The article "Career Expert Provides DOs and DON'Ts for Job Seekers on Social Networking" (CareerBuilder.com, August 19,2009 ) included data from a survey of 2,667 hiring managers and human resource professionals. The article noted that more employers are now using social networks to screen job applicants. Of the 2,667 people who participated in the survey, 1,200 indicated that they use social networking sites such as Facebook, MySpace, and LinkedIn to research job applicants. Assume that the sample is representative of hiring managers and human resource professionals. Answer the four key questions (QSTN) to confirm that the suggested method in this situation is a confidence interval for a population proportion.
What do you think about this solution?
We value your feedback to improve our textbook solutions.