Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For each of the following choices, explain which one would result in a wider large-sample confidence interval for \(p\) : a. \(90 \%\) confidence level or \(95 \%\) confidence level b. \(n=100\) or \(n=400\)

Short Answer

Expert verified
The confidence interval is wider for a confidence level of 95% when compared to 90%. When making a comparison based on the sample size, the confidence interval is wider for a sample size of 100 when compared to a sample size of 400.

Step by step solution

01

Analyze the Impact of Confidence Level

When comparing a 90% confidence level to a 95% confidence level, the one that results in a wider confidence interval is the 95% confidence level. The higher the confidence level, the wider the interval. This is because to increase our confidence that the interval contains the unknown population parameter, we have to consider more values, thus enlarging the interval.
02

Analyze the Impact of Sample Size

When comparing a sample size (n) of 100 to a sample size of 400, the one that results in a wider confidence interval is when the sample size is 100. The larger the sample size, the narrower the confidence interval. This is because with more data, we have more information about the population parameter and hence less uncertainty, which is reflected by a narrower interval.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A random sample will be selected from the population of all adult residents of a particular city. The sample proportion \(\hat{p}\) will be used to estimate \(p,\) the proportion of all adult residents who are registered to vote. For which of the following situations will the estimate tend to be closest to the actual value of \(p ?\) I. \(\quad n=1,000, p=0.5\) II. \(\quad n=200, p=0.6\) III. \(\quad n=100, p=0.7\)

In a survey on supernatural experiences, 722 of 4,013 adult Americans reported that they had seen a ghost (“What Supernatural Experiences We've Had," USA Today, February 8,2010 ). Assume that this sample is representative of the population of adult Americans. a. Use the given information to estimate the proportion of adult Americans who would say they have seen a ghost. b. Verify that the conditions for use of the margin of error formula to be appropriate are met. c. Calculate the margin of error. d. Interpret the margin of error in context. e. Construct and interpret a \(90 \%\) confidence interval for the proportion of all adult Americans who would say they have seen a ghost. f. Would a \(99 \%\) confidence interval be narrower or wider than the interval calculated in Part (e)? Justify your answer.

The article "Hospitals Dispute Medtronic Data on Wires" (The Wall Street Journal, February 4, 2010) describes several studies of the failure rate of defibrillators used in the treatment of heart problems. In one study conducted by the Mayo Clinic, it was reported that failures within the first 2 years were experienced by 18 of 89 patients under 50 years old and 13 of 362 patients age 50 and older. Assume that these two samples are representative of patients who receive this type of defibrillator in the two age groups. a. Construct and interpret a \(95 \%\) confidence interval for the proportion of patients under 50 years old who experience a failure within the first 2 years. b. Construct and interpret a \(99 \%\) confidence interval for the proportion of patients age 50 and older who experience a failure within the first 2 years. c. Suppose that the researchers wanted to estimate the proportion of patients under 50 years old who experience this type of failure with a margin of error of \(0.03 .\) How large a sample should be used? Use the given study results to obtain a preliminary estimate of the population proportion.

Use the formula for the standard error of \(\hat{p}\) to explain why increasing the sample size decreases the standard error.

Suppose that county planners are interested in learning about the proportion of county residents who would pay a fee for a curbside recycling service if the county were to offer this service. Two different people independently selected random samples of county residents and used their sample data to construct the following confidence intervals for the proportion who would pay for curbside recycling: Interval 1:(0.68,0.74) Interval 2:(0.68,0.72) a. Explain how it is possible that the two confidence intervals are not centered in the same place. b. Which of the two intervals conveys more precise information about the value of the population proportion? c. If both confidence intervals are associated with a \(95 \%\) confidence level, which confidence interval was based on the smaller sample size? How can you tell? d. If both confidence intervals were based on the same sample size, which interval has the higher confidence level? How can you tell?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free