Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The Gallup Organization conducts an annual survey on crime. It was reported that \(25 \%\) of all households experienced some sort of crime during the past year. This estimate was based on a sample of 1,002 randomly selected adults. The report states, "One can say with \(95 \%\) confidence that the margin of sampling error is ±3 percentage points." Explain how this statement can be justified.

Short Answer

Expert verified
The statement can be justified if the calculated margin of error is approximately the same as the given one. This requires understanding and applying the formula for the margin of error in a confidence interval calculation.

Step by step solution

01

Understand the terms

First, we need to understand what each term means. The 25% is the sample estimate, or in other words, the point estimate, which is calculated based on the given sample. The ±3 percentage points is the margin of error, representing the range that the actual population parameter is expected to fall within, from the point estimate with 95% confidence level.
02

Calculating margin of error

The margin of error in a confidence interval calculation can be found using the formula: \(E = Z \cdot \sqrt{{p(1-p)}/n}\), where E is the margin of error, Z is the Z-value, p is the sample proportion and n is the size of the sample. The Z-value corresponds directly to the chosen confidence level. For a confidence level of 95%, the corresponding Z-value is approximately 1.96 (from Z-table or standard statistical programs). Now, substituting the given values, \(E = 1.96 \cdot \sqrt{{0.25 \cdot 0.75}/1002}\), will get you the margin of error.
03

Justify the statement

To justify the statement, compare the calculated margin of error with the given margin of error in the problem (±3 percentage points). If they are approximately the same, then the statement can be justified.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Thereport"2005 ElectronicMonitoring\& Surveillance \(\begin{array}{lll}\text { Survey: } & \text { Many Companies Monitoring, } & \text { Recording, }\end{array}\) Videotaping-and Firing-Employees" (American Management nesses. The report stated that 137 of the 526 businesses had fired workers for misuse of the Internet. Assume that this sample is representative of businesses in the United States. a. Estimate the proportion of all businesses in the U.S. that have fired workers for misuse of the Internet. What statistic did you use? b. Use the sample data to estimate the standard error of \(\hat{p}\). c. Calculate and interpret the margin of error associated with the estimate in Part (a). (Hint: See Example 9.3 )

Suppose that a city planning commission wants to know the proportion of city residents who support installing streetlights in the downtown area. Two different people independently selected random samples of city residents and used their sample data to construct the following confidence intervals for the population proportion: Interval 1:(0.28,0.34) Interval 2:(0.31,0.33) (Hint: Consider the formula for the confidence interval given on page 401 ) a. Explain how it is possible that the two confidence intervals are not centered in the same place. b. Which of the two intervals conveys more precise information about the value of the population proportion? c. If both confidence intervals have a \(95 \%\) confidence level, which confidence interval was based on the smaller sample size? How can you tell? d. If both confidence intervals were based on the same sample size, which interval has the higher confidence level? How can you tell?

The report "2005 Electronic Monitoring \& Surveillance Survey: Many Companies Monitoring, Recording, Videotapingand Firing-Employees" (American Management Association, 2005) summarized a survey of 526 U.S. businesses. The report stated that 137 of the 526 businesses had fired workers for misuse of the Internet, and 131 had fired workers for e-mail misuse. Assume that the sample is representative of businesses in the United States. a. Construct and interpret a \(95 \%\) confidence interval for the proportion of U.S. businesses that have fired workers for misuse of the Internet. b. What are two reasons why a \(90 \%\) confidence interval for the proportion of U.S. businesses that have fired workers for misuse of e-mail would be narrower than the \(95 \%\) confidence interval calculated in Part (a)?

The formula used to calculate a large-sample confidence interval for \(p\) is $$ \hat{p} \pm(z \text { critial value }) \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} $$ What is the appropriate \(z\) critical value for each of the following confidence levels? a. \(90 \%\) b. \(99 \%\) c. \(80 \%\)

Consider taking a random sample from a population with \(p=0.70\). a. What is the standard error of \(\hat{p}\) for random samples of size \(100 ?\) b. Would the standard error of \(\hat{p}\) be smaller for samples of size 100 or samples of size \(400 ?\) c. Does decreasing the sample size by a factor of \(4,\) from 400 to 100 , result in a standard error of \(\hat{p}\) that is four times as large?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free