Chapter 9: Problem 11
Use the formula for the standard error of \(\hat{p}\) to explain why increasing the sample size decreases the standard error.
Chapter 9: Problem 11
Use the formula for the standard error of \(\hat{p}\) to explain why increasing the sample size decreases the standard error.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe article "Students Increasingly Turn to Credit Cards" (San Luis Obispo Tribune, July 21,2006 ) reported that \(37 \%\) of college freshmen and \(48 \%\) of college seniors carry a credit card balance from month to month. Suppose that the reported percentages were based on random samples of 1,000 college freshmen and 1,000 college seniors. (Hint: See Example 9.5\()\) a. Construct and interpret a \(90 \%\) confidence interval for the proportion of college freshmen who carry a credit card balance from month to month. b. Construct and interpret a \(90 \%\) confidence interval for the proportion of college seniors who carry a credit card balance from month to month. c. Explain why the two \(90 \%\) confidence intervals from Parts (a) and (b) are not the same width.
Consider taking a random sample from a population with \(p=0.70\). a. What is the standard error of \(\hat{p}\) for random samples of size \(100 ?\) b. Would the standard error of \(\hat{p}\) be smaller for samples of size 100 or samples of size \(400 ?\) c. Does decreasing the sample size by a factor of \(4,\) from 400 to 100 , result in a standard error of \(\hat{p}\) that is four times as large?
In the article "Fluoridation Brushed Off by Utah" (Associated Press, August 24,1998 ), it was reported that a small but vocal minority in Utah has been successful in keeping fluoride out of Utah water supplies despite evidence that fluoridation reduces tooth decay and despite the fact that a clear majority of Utah residents favor fluoridation. To support this statement, the article included the result of a survey of Utah residents that found \(65 \%\) to be in favor of fluoridation. Suppose that this result was based on a random sample of 150 Utah residents. Construct and interpret a \(90 \%\) confidence interval for \(p,\) the proportion of all Utah residents who favor fluoridation. Is this interval consistent with the statement that fluoridation is favored by a clear majority of residents?
A large online retailer is interested in learning about the proportion of customers making a purchase during a particular month who were satisfied with the online ordering process. A random sample of 600 of these customers included 492 who indicated they were satisfied. For each of the three following statements, indicate if the statement is correct or incorrect. If the statement is incorrect, explain what makes it incorrect. Statement 1: It is unlikely that the estimate \(\hat{p}=0.82\) differs from the value of the actual population proportion by more than 0.0157 . Statement 2 : It is unlikely that the estimate \(\hat{p}=0.82\) differs from the value of the actual population proportion by more than 0.0307 . Statement 3: The estimate \(\hat{p}=0.82\) will never differ from the value of the actual population proportion by more than 0.0307 .
The formula used to calculate a large-sample confidence interval for \(p\) is $$ \hat{p} \pm(z \text { critial value }) \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} $$ What is the appropriate \(z\) critical value for each of the following confidence levels? a. \(95 \%\) b. \(98 \%\) c. \(85 \%\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.