Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Explain why there is sample-to-sample variability in \(\hat{p}\) but not in \(p\).

Short Answer

Expert verified
\(\hat{p}\) displays sample-to-sample variability because each sample drawn might include different individuals, resulting in different sample proportions. On the other hand, \(p\) doesn't vary as it represents the whole population proportion, which remains constant despite the number or size of samples drawn from it.

Step by step solution

01

Understand what \(\hat{p}\) and \(p\) represent

\(\hat{p}\) represents the proportion in a sample, while \(p\) represents the proportion in a population.
02

Understand Sample Variability

Each time a sample is drawn from a population, there is a likelihood that different individuals will be selected. Therefore, the proportion \(\hat{p}\) computed from the sample will likely vary due to the different individuals included in the sample, this is what is referred to as sample-to-sample variability.
03

Understand constancy of Population Proportion

In contrast, the population parameter \(p\), the actual proportion in the population, does not vary. This is because it is a fixed value that represents the overall proportion in the entire population, regardless of how many samples are drawn or the size of these samples.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The report "New Study Shows Need for Americans to Focus on Securing Online Accounts and Backing Up Critical Data" (PRNewswire, October 29,2009 ) reported that only \(25 \%\) of Americans change computer passwords quarterly, in spite of a recommendation from the National Cyber Security Alliance that passwords be changed at least once every 90 days. For purposes of this exercise, assume that the \(25 \%\) figure is correct for the population of adult Americans. a. A random sample of size \(n=200\) will be selected from this population and \(\hat{p}\), the proportion who change passwords quarterly, will be calculated. What are the mean and standard deviation of the sampling distribution of \(\hat{p} ?\) b. Is the sampling distribution of \(\hat{p}\) approximately normal for random samples of size \(n=200 ?\) Explain. c. Suppose that the sample size is \(n=50\) rather than \(n=200 .\) Does the change in sample size affect the mean and standard deviation of the sampling distribution of \(\hat{p} ?\) If so, what are the new values of the mean and standard deviation? If not, explain why not. d. Is the sampling distribution of \(\hat{p}\) approximately normal for random samples of size \(n=50 ?\) Explain.

The article "Career Expert Provides DOs and DON'Ts for Job Seekers on Social Networking" (CareerBuilder.com, August 19,2009 ) included data from a survey of 2,667 hiring managers and human resource professionals. The article noted that many employers are using social networks to screen job applicants and that this practice is becoming more common. Of the 2,667 people who participated in the survey, 1,200 indicated that they use social networking sites (such as Facebook, MySpace, and LinkedIn) to research job applicants. For the purposes of this exercise, assume that the sample can be regarded as a random sample of hiring managers and human resource professionals. a. Suppose you are interested in learning about the value of \(p,\) the proportion of all hiring managers and human resource managers who use social networking sites to research job applicants. This proportion can be estimated using the sample proportion, \(p .\) What is the value of \(p\) for this sample? b. Based on what you know about the sampling distribution of \(p,\) is it reasonable to think that this estimate is within 0.02 of the actual value of the population proportion? Explain why or why not.

Explain what it means when we say the value of a sample statistic varies from sample to sample.

The report "California's Education Skills Gap: Modest Improvements Could Yield Big Gains" (Public Policy Institute of California, April \(16,2008,\) www.ppic.org) states that nationwide, \(61 \%\) of high school graduates go on to attend a two-year or four-year college the year after graduation. The proportion of high school graduates in California who go on to college was estimated to be \(0.55 .\) Suppose that this estimate was based on a random sample of 1,500 California high school graduates. Is it reasonable to conclude that the proportion of California high school graduates who attend college the year after graduation is different from the national figure? (Hint: Use what you know about the sampling distribution of \(\hat{p}\). You might also refer to Example \(8.5 .)\)

A random sample is to be selected from a population that has a proportion of successes \(p=0.65\). Determine the mean and standard deviation of the sampling distribution of \(\hat{p}\) for each of the following sample sizes: a. \(n=10\) d. \(n=50\) b. \(n=20\) e. \(n=100\) c. \(n=30\) f. \(n=200\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free