Chapter 8: Problem 43
Explain why there is sample-to-sample variability in \(\hat{p}\) but not in \(p\).
Chapter 8: Problem 43
Explain why there is sample-to-sample variability in \(\hat{p}\) but not in \(p\).
All the tools & learning materials you need for study success - in one app.
Get started for freeThe report "New Study Shows Need for Americans to Focus on Securing Online Accounts and Backing Up Critical Data" (PRNewswire, October 29,2009 ) reported that only \(25 \%\) of Americans change computer passwords quarterly, in spite of a recommendation from the National Cyber Security Alliance that passwords be changed at least once every 90 days. For purposes of this exercise, assume that the \(25 \%\) figure is correct for the population of adult Americans. a. A random sample of size \(n=200\) will be selected from this population and \(\hat{p}\), the proportion who change passwords quarterly, will be calculated. What are the mean and standard deviation of the sampling distribution of \(\hat{p} ?\) b. Is the sampling distribution of \(\hat{p}\) approximately normal for random samples of size \(n=200 ?\) Explain. c. Suppose that the sample size is \(n=50\) rather than \(n=200 .\) Does the change in sample size affect the mean and standard deviation of the sampling distribution of \(\hat{p} ?\) If so, what are the new values of the mean and standard deviation? If not, explain why not. d. Is the sampling distribution of \(\hat{p}\) approximately normal for random samples of size \(n=50 ?\) Explain.
The article "Career Expert Provides DOs and DON'Ts for Job Seekers on Social Networking" (CareerBuilder.com, August 19,2009 ) included data from a survey of 2,667 hiring managers and human resource professionals. The article noted that many employers are using social networks to screen job applicants and that this practice is becoming more common. Of the 2,667 people who participated in the survey, 1,200 indicated that they use social networking sites (such as Facebook, MySpace, and LinkedIn) to research job applicants. For the purposes of this exercise, assume that the sample can be regarded as a random sample of hiring managers and human resource professionals. a. Suppose you are interested in learning about the value of \(p,\) the proportion of all hiring managers and human resource managers who use social networking sites to research job applicants. This proportion can be estimated using the sample proportion, \(p .\) What is the value of \(p\) for this sample? b. Based on what you know about the sampling distribution of \(p,\) is it reasonable to think that this estimate is within 0.02 of the actual value of the population proportion? Explain why or why not.
Explain what it means when we say the value of a sample statistic varies from sample to sample.
The report "California's Education Skills Gap: Modest Improvements Could Yield Big Gains" (Public Policy Institute of California, April \(16,2008,\) www.ppic.org) states that nationwide, \(61 \%\) of high school graduates go on to attend a two-year or four-year college the year after graduation. The proportion of high school graduates in California who go on to college was estimated to be \(0.55 .\) Suppose that this estimate was based on a random sample of 1,500 California high school graduates. Is it reasonable to conclude that the proportion of California high school graduates who attend college the year after graduation is different from the national figure? (Hint: Use what you know about the sampling distribution of \(\hat{p}\). You might also refer to Example \(8.5 .)\)
A random sample is to be selected from a population that has a proportion of successes \(p=0.65\). Determine the mean and standard deviation of the sampling distribution of \(\hat{p}\) for each of the following sample sizes: a. \(n=10\) d. \(n=50\) b. \(n=20\) e. \(n=100\) c. \(n=30\) f. \(n=200\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.