Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For which of the following sample sizes would the sampling distribution of \(\hat{p}\) be approximately normal when $$ \begin{array}{rl} p= & 0.2 ? \text { When } p=0.8 ? \text { When } p=0.6 ? \\ n=10 & n=25 \\ n=50 & n=100 \end{array} $$

Short Answer

Expert verified
For \(p = 0.2\) and \(p = 0.8\), the sampling distribution of \(\hat{p}\) would be approximately normal for \(n > 25\). For \(p = 0.6\), the distribution would be approximately normal for \(n > 20\). Thus, sample sizes of 25, 50, and 100 could feasibly result in an approximately normal distribution.

Step by step solution

01

Evaluate for p = 0.2

First, substitute \(p = 0.2\) into conditions \(np > 5\) and \(n(1 - p) > 5\). This will result in the conditions \(n > 25\) and \(n > 6.25\). Therefore, you need a sample size bigger than 25 for the sampling distribution to be approximately normal.
02

Evaluate for p = 0.8

Substitute \(p = 0.8\) into the same conditions. The result will be \(n > 6.25\) and \(n > 25\). Again, choosing the larger, we find that the distribution will be approximately normal for samples of more than 25.
03

Evaluate for p = 0.6

Now take \(p = 0.6\) and substitute it into \(np > 5\) and \(n(1 - p) > 5\). The conditions now are \(n > 8.33\) and \(n > 20\). So, for this probability, the sample needs to be larger than 20 for it to be approximately normal.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A random sample of size 300 is to be selected from a population. Determine the mean and standard deviation of the sampling distribution of \(\hat{p}\) for each of the following population proportions. a. \(p=0.20\) b. \(p=0.45\) c. \(p=0.70\) d. \(p=0.90\)

A random sample of 50 registered voters in a particular city included 32 who favored using city funds for the construction of a new recreational facility. For this sample, \(\hat{p}=\frac{32}{50}=\) 0.64 . If a second random sample of 50 registered voters was selected, would it surprise you if \(\hat{p}\) for that sample was not equal to 0.64 ? Why or why not?

A random sample is to be selected from a population that has a proportion of successes \(p=0.25\). Determine the mean and standard deviation of the sampling distribution of \(\hat{p}\) for each of the following sample sizes: a. \(n=10\) d. \(n=50\) b. \(n=20\) e. \(n=100\) c. \(n=30\) f. \(n=200\)

Consider the following statement: In a sample of 20 passengers selected from those who flew from Dallas to New York City in April 2012, the proportion who checked luggage was \(\underline{0.45}\). a. Is the number that appears in boldface in this statement a sample proportion or a population proportion? b. Which of the following use of notation is correct, \(p=0.45\) or \(\hat{p}=0.45 ?\)

In a national survey of 2,013 American adults, 1,283 indicated that they believe that rudeness is a more serious problem than in past years (Associated Press, April 3,2002 ). Assume that it is reasonable to regard this sample as a random sample of adult Americans. Is it reasonable to conclude that the proportion of adults who believe that rudeness is a worsening problem is greater than \(0.5 ?\) (Hint: Use what you know about the sampling distribution of \(\hat{p} .\) You might also refer to Example 8.5.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free