Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that \(5 \%\) of cereal boxes contain a prize and the other \(95 \%\) contain the message, "Sorry, try again." Consider the random variable \(x,\) where \(x=\) number of boxes purchased until a prize is found. a. What is the probability that at most two boxes must be purchased? b. What is the probability that exactly four boxes must be purchased? c. What is the probability that more than four boxes must be purchased?

Short Answer

Expert verified
a. The probability that at most two boxes must be purchased is 0.0975 or 9.75 %. \n b. The probability that exactly four boxes must be purchased is 0.043125 or 4.3125 %. \n c. The probability that more than four boxes must be purchased is 0.815625 or 81.5625 %.

Step by step solution

01

Determining the Probability of Success

The probability of success, \(p\), for this scenario, which is finding a prize in a cereal box, is defined as \(0.05\) or \(5\% \).
02

Calculating the Probability for at Most Two Purchases

It is needed to calculate the probability of finding a prize within 1 or 2 purchases. So, it is the sum of the probabilities for x = 1 and x = 2.
03

Execute Calculation for Step 2

Substitute x = 1 and x = 2 into the geometric distribution formula and sum the results: \(P(x \leq 2) = P(x=1) + P(x=2) = (1 - 0.05)^{(1-1)} * 0.05 + (1 - 0.05)^{(2-1)} * 0.05 = 0.05 + 0.0475 = 0.0975.\)
04

Calculating the Probability for Exactly Four Purchases

Find the probability of finding a prize exactly on the fourth purchase. Therefore, substitute x = 4 into the geometric distribution formula.
05

Execute Calculation for Step 4

Applying the formula \(P(x=4) = (1 - 0.05)^{(4-1)} * 0.05 = 0.043125.\)
06

Calculating the Probability for More Than Four Purchases

To determine the probability of the first success taking place after more than four trials, it is necessary to find the probability of the first success happening in at most four trials (from step 2 and step 4) and then subtracting this from 1.
07

Execute Calculation for Step 6

So, \(P(x > 4) = 1 - P(x \leq 4) = 1 - ( P(x=1) + P(x=2) + P(x=3) + P(x=4) ) = 1 - ( P(x \leq 2) + P(x=3) + P(x=4) ) = 1 - (0.0975 + (1 - 0.05)^{(3-1)} * 0.05 + 0.043125) = 0.815625.\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose a playlist on an MP3 music player consisting of 100 songs includes 8 by a particular artist. Suppose that songs are played by selecting a song at random (with replacement) from the playlist. The random variable \(x\) represents the number of songs until a song by this artist is played. a. Explain why the probability distribution of \(x\) is not binomial. b. Find the following probabilities. (Hint: See Example 6.31) i. \(p(4)\) ii. \(P(x \leq 4)\) iii. \(P(x>4)\) iv. \(P(x \geq 4)\) c. Interpret each of the probabilities in Part (b) and explain the difference between them.

Suppose that a computer manufacturer receives computer boards in lots of five. Two boards are selected from each lot for inspection. You can represent possible outcomes of the selection process by pairs. For example, the pair (1,2) represents the selection of Boards 1 and 2 for inspection. a. List the 10 different possible outcomes. b. Suppose that Boards 1 and 2 are the only defective boards in a lot of five. Two boards are to be chosen at random. Let \(x=\) the number of defective boards observed among those inspected. Find the probability distribution of \(x\).

Consider the following sample of 25 observations on \(x=\) diameter (in centimeters) of CD disks produced by a particular manufacturer: \(\begin{array}{lllllll}16.01 & 16.08 & 16.13 & 15.94 & 16.05 & 16.27 & 15.89 \\\ 15.84 & 15.95 & 16.10 & 15.92 & 16.04 & 15.82 & 16.15 \\ 16.06 & 15.66 & 15.78 & 15.99 & 16.29 & 16.15 & 16.19 \\ 16.22 & 16.07 & 16.13 & 16.11 & & & \\\ \end{array}\) The 13 largest normal scores for a sample of size 25 are \(1.965,1.524,1.263,1.067,0.905,0.764,0.637,0.519,\) \(0.409,0.303,0.200,0.100,\) and \(0 .\) The 12 smallest scores result from placing a negative sign in front of each of the given nonzero scores. Construct a normal probability plot. Is it reasonable to think that the disk diameter distribution is approximately normal? Explain.

Studies have found that women diagnosed with cancer in one breast also sometimes have cancer in the other breast that was not initially detected by mammogram or physical examination ("MRI Evaluation of the Contralateral Breast in Women with Recently Diagnosed Breast Cancer," The New England Journal of Medicine [2007]: 1295-1303). To determine if magnetic resonance imaging (MRI) could detect missed tumors in the other breast, 969 women diagnosed with cancer in one breast had an MRI exam. The MRI detected tumors in the other breast in 30 of these women. a. Use \(p=\frac{30}{969}=0.031\) as an estimate of the probability that a woman diagnosed with cancer in one breast has an undetected tumor in the other breast. Consider a random sample of 500 women diagnosed with cancer in one breast. Explain why it is reasonable to think that the random variable \(x=\) number in the sample who have an undetected tumor in the other breast has a binomial distribution with \(n=500\) and \(p=0.031\). b. Is it reasonable to use the normal distribution to approximate probabilities for the random variable \(x\) defined in Part (a)? Explain why or why not. c. Approximate the following probabilities: i. \(\quad P(x<10)\) ii. \(\quad P(10 \leq x \leq 25)\) iii. \(P(x>20)\) d. For each of the probabilities calculated in Part (c), write a sentence interpreting the probability.

A symptom validity test (SVT) is sometimes used to confirm diagnosis of psychiatric disorders. The paper "Developing a Symptom Validity Test for Posttraumatic Stress Disorder: Application of the Binomial Distribution" ( Journal of Anxiety Disorders [2008]: 1297-1302) investigated the use of SVTs in the diagnosis of post-traumatic stress disorder. One SVT proposed is a 60 -item test (called the MENT test), where each item has only a correct or incorrect response. The MENT test is designed so that responses to the individual questions can be considered independent of one another. For this reason, the authors of the paper believe that the score on the MENT test can be viewed as a binomial random variable with \(n=60 .\) The MENT test is designed to help in distinguishing fictitious claims of post-traumatic stress disorder. The items on the test are written so that the correct response to an item should be relatively obvious, even to people suffering from stress disorders. Researchers have found that a patient with a fictitious claim of stress disorder will try to "fake" the test, and that the probability of a correct response to an item for these patients is 0.7 (compared to 0.96 for other patients). The authors used a normal approximation to the binomial distribution with \(n=60\) and \(p=0.70\) to calculate various probabilities of interest, where \(x=\) number of correct responses on the MENT test for a patient who is trying to fake the test. a. Verify that it is appropriate to use a normal approximation to the binomial distribution in this situation. b. Approximate the following probabilities: i. \(\quad P(x=42)\) ii. \(P(x<42)\) iii. \(P(x \leq 42)\) c. Explain why the probabilities calculated in Part (b) are not all equal. d. The authors calculated the exact binomial probability of a score of 42 or less for someone who is not faking the test. Using \(p=0.96\), they found $$ P(x \leq 42)=.000000000013 $$ Explain why the authors calculated this probability using the binomial formula rather than using a normal approximation. e. The authors propose that someone who scores 42 or less on the MENT exam is faking the test. Explain why this is reasonable, using some of the probabilities from Parts (b) and (d) as justification.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free