Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Sophie is a dog who loves to play catch. Unfortunately, she isn't very good at this, and the probability that she catches a ball is only \(0.1 .\) Let \(x\) be the number of tosses required until Sophie catches a ball. a. Does \(x\) have a binomial or a geometric distribution? b. What is the probability that it will take exactly two tosses for Sophie to catch a ball? c. What is the probability that more than three tosses will be required?

Short Answer

Expert verified
a. \(x\) has a geometric distribution. b. The exact probability can be calculated from the formula for the geometric distribution. After substituting the given values in the formula, you get a numerical result for \(P(X=2)\). c. The exact probability for more than three tosses required can be calculated by subtracting the sum of \(P(X=1), P(X=2), P(X=3)\) from 1 to get \(finalValue\).

Step by step solution

01

Identify the Distribution

The number of tosses until Sophie catches a ball can be seen as a sequence of independent and identically distributed Bernoulli trials, where each trial results in a 'success' (Sophie catches the ball) with probability \(0.1\) and 'failure' (Sophie doesn't catch the ball) with probability \(0.9\). As such, it follows a geometric distribution. Therefore, \(x\) has a geometric distribution.
02

Calculate the Exact Probability

For a geometric distribution, the probability that the first success (Sophie catching the ball) comes on the \(k^{th}\) trial is given by \(P(X=k)=(1-p)^{k-1}p\), where \(p\) is the probability of success on each trial. In this case, \(p=0.1\) and we want to find the probability that it will take exactly two tosses for Sophie to catch a ball, i.e. \(P(X=2)\). So, substituting the given values in the formula, we get \(P(X=2)=(1-0.1)^{2-1}*0.1\). Complete the calculation to find the exact probability.
03

Calculate the Probability of More Than Three Tosses

The probability that more than three tosses will be required is the same as \(1-P(X<=3)\). We can calculate \(P(X<=3)\) as the sum of \(P(X=1), P(X=2), P(X=3)\). Use the formula for the geometric distribution described in the previous step to calculate these probabilities, sum them up, and subtract the sum from 1. Call this \(finalValue\). Complete the calculation to find the exact probability.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A contractor is required by a county planning department to submit anywhere from one to five forms (depending on the nature of the project) in applying for a building permit. Let \(y\) be the number of forms required of the next applicant. The probability that \(y\) forms are required is known to be proportional to \(y ;\) that is, \(p(y)=k y\) for \(y=1, \ldots, 5\) a. What is the value of \(k ?\) (Hint: \(\sum p(y)=1\) ) b. What is the probability that at most three forms are required? c. What is the probability that between two and four forms (inclusive) are required?

Determine each of the following areas under the standard normal (z) curve: a. To the left of -1.28 b. To the right of 1.28 c. Between -1 and 2 d. To the right of 0 e. To the right of -5 f. Between -1.6 and 2.5 g. To the left of 0.23

Suppose \(x=\) the number of courses a randomly selected student at a certain university is taking. The probability distribution of \(x\) appears in the following table: $$ \begin{array}{lccccccc} x & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ p(x) & 0.02 & 0.03 & 0.09 & 0.25 & 0.40 & 0.16 & 0.05 \end{array} $$ a. What is \(P(x=4)\) ? b. What is \(P(x \leq 4)\) ? c. What is the probability that the selected student is taking at most five courses? d. What is the probability that the selected student is taking at least five courses? More than five courses? e. Calculate \(P(3 \leq x \leq 6)\) and \(P(3 < x < 6)\). Explain in words why these two probabilities are different.

A symptom validity test (SVT) is sometimes used to confirm diagnosis of psychiatric disorders. The paper "Developing a Symptom Validity Test for Posttraumatic Stress Disorder: Application of the Binomial Distribution" ( Journal of Anxiety Disorders [2008]: 1297-1302) investigated the use of SVTs in the diagnosis of post-traumatic stress disorder. One SVT proposed is a 60 -item test (called the MENT test), where each item has only a correct or incorrect response. The MENT test is designed so that responses to the individual questions can be considered independent of one another. For this reason, the authors of the paper believe that the score on the MENT test can be viewed as a binomial random variable with \(n=60 .\) The MENT test is designed to help in distinguishing fictitious claims of post-traumatic stress disorder. The items on the test are written so that the correct response to an item should be relatively obvious, even to people suffering from stress disorders. Researchers have found that a patient with a fictitious claim of stress disorder will try to "fake" the test, and that the probability of a correct response to an item for these patients is 0.7 (compared to 0.96 for other patients). The authors used a normal approximation to the binomial distribution with \(n=60\) and \(p=0.70\) to calculate various probabilities of interest, where \(x=\) number of correct responses on the MENT test for a patient who is trying to fake the test. a. Verify that it is appropriate to use a normal approximation to the binomial distribution in this situation. b. Approximate the following probabilities: i. \(\quad P(x=42)\) ii. \(P(x<42)\) iii. \(P(x \leq 42)\) c. Explain why the probabilities calculated in Part (b) are not all equal. d. The authors calculated the exact binomial probability of a score of 42 or less for someone who is not faking the test. Using \(p=0.96\), they found $$ P(x \leq 42)=.000000000013 $$ Explain why the authors calculated this probability using the binomial formula rather than using a normal approximation. e. The authors propose that someone who scores 42 or less on the MENT exam is faking the test. Explain why this is reasonable, using some of the probabilities from Parts (b) and (d) as justification.

A person is asked to draw a line segment that they think is 3 inches long. The length of the line segment drawn will be measured and the value of \(x=(\) actual length -3\()\) will be calculated. a. What is the value of \(x\) for a person who draws a line segment that is 3.1 inches long? b. Is \(x\) a discrete or continuous random variable?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free