Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The paper "The Effect of Temperature and Humidity on Size of Segregated Traffic Exhaust Particle Emissions" (Atmospheric Environment [2008]: 2369-2382) gave the following summary quantities for a measure of traffic flow (vehicles/second) during peak traffic hours. Traffic flow was recorded daily at a particular location over a long sequence of days. Mean \(=0.41\) Standard Deviation \(=0.26\) Median \(=0.45\) 5th percentile \(=0.03 \quad\) Lower quartile \(=0.18\) \(\begin{array}{ll}\text { Upper quartile } & =0.57 & \text { 95th Percentile } & =0.86\end{array}\) Based on these summary quantities, do you think that the distribution of the measure of traffic flow is approximately normal? Explain your reasoning.

Short Answer

Expert verified
Based on these summary quantities, it is unlikely that the distribution of the traffic flow is approximately normal. While the mean and median are close to each other, suggesting possible symmetry, the quartiles and percentiles are not symmetric around the mean or median. This inconsistency with the known properties of a normal distribution suggests that the traffic flow data does not follow a normal distribution.

Step by step solution

01

- Compare Mean and Median

Check if the mean and median of the distribution are close to each other. In normal distributions, the mean and median are effectively the same. Here, the mean is \(0.41\) and the median is \(0.45\). They are quite close to each other, indicating the data may be symmetric around the mean value.
02

- Examine Lower and Upper Quartiles

Look at the lower and upper quartiles. In a normal distribution, the data is symmetric around the mean, so the lower and upper quartiles should be equidistant from the mean or median. The lower quartile is \(0.18\) and the upper quartile is \(0.57\). However, distance of lower quartile from median (\(0.45 - 0.18 = 0.27\)) is not equal to distance of upper quartile from median (\(0.57 - 0.45 = 0.12\))
03

- Evaluate Percentiles

Inspect the 5th and 95th percentiles. Again, if the distribution is normal, these should be roughly symmetric around the mean or median. The 5th percentile is \(0.03\), and the 95th percentile is \(0.86\). The distance of 5th percentile from median (\(0.45 - 0.03 = 0.42\)) is not equal to distance of 95th percentile from median (\(0.86 - 0.45 = 0.41\))

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two six-sided dice, one red and one white, will be rolled. List the possible values for each of the following random variables. a. \(x=\) sum of the two numbers showing b. \(y=\) difference between the number on the red die and the number on the white die (red - white) c. \(w=\) largest number showing

Studies have found that women diagnosed with cancer in one breast also sometimes have cancer in the other breast that was not initially detected by mammogram or physical examination ("MRI Evaluation of the Contralateral Breast in Women with Recently Diagnosed Breast Cancer," The New England Journal of Medicine [2007]: 1295-1303). To determine if magnetic resonance imaging (MRI) could detect missed tumors in the other breast, 969 women diagnosed with cancer in one breast had an MRI exam. The MRI detected tumors in the other breast in 30 of these women. a. Use \(p=\frac{30}{969}=0.031\) as an estimate of the probability that a woman diagnosed with cancer in one breast has an undetected tumor in the other breast. Consider a random sample of 500 women diagnosed with cancer in one breast. Explain why it is reasonable to think that the random variable \(x=\) number in the sample who have an undetected tumor in the other breast has a binomial distribution with \(n=500\) and \(p=0.031\). b. Is it reasonable to use the normal distribution to approximate probabilities for the random variable \(x\) defined in Part (a)? Explain why or why not. c. Approximate the following probabilities: i. \(\quad P(x<10)\) ii. \(\quad P(10 \leq x \leq 25)\) iii. \(P(x>20)\) d. For each of the probabilities calculated in Part (c), write a sentence interpreting the probability.

Consider the variable \(x=\) time required for a college student to complete a standardized exam. Suppose that for the population of students at a particular university, the distribution of \(x\) is well approximated by a normal curve with mean 45 minutes and standard deviation 5 minutes. a. If 50 minutes is allowed for the exam, what proportion of students at this university would be unable to finish in the allotted time? b. How much time should be allowed for the exam if you wanted \(90 \%\) of the students taking the test to be able to finish in the allotted time? c. How much time is required for the fastest \(25 \%\) of all tudents to complete the exam

Let \(z\) denote a random variable that has a standard normal distribution. Determine each of the following probabilities: a. \(P(z<2.36)\) b. \(P(z \leq 2.36)\) c. \(P(z<-1.23)\) d. \(P(1.142)\) g. \(P(z \geq-3.38)\) h. \(P(z<4.98)\)

A symptom validity test (SVT) is sometimes used to confirm diagnosis of psychiatric disorders. The paper "Developing a Symptom Validity Test for Posttraumatic Stress Disorder: Application of the Binomial Distribution" ( Journal of Anxiety Disorders [2008]: 1297-1302) investigated the use of SVTs in the diagnosis of post-traumatic stress disorder. One SVT proposed is a 60 -item test (called the MENT test), where each item has only a correct or incorrect response. The MENT test is designed so that responses to the individual questions can be considered independent of one another. For this reason, the authors of the paper believe that the score on the MENT test can be viewed as a binomial random variable with \(n=60 .\) The MENT test is designed to help in distinguishing fictitious claims of post-traumatic stress disorder. The items on the test are written so that the correct response to an item should be relatively obvious, even to people suffering from stress disorders. Researchers have found that a patient with a fictitious claim of stress disorder will try to "fake" the test, and that the probability of a correct response to an item for these patients is 0.7 (compared to 0.96 for other patients). The authors used a normal approximation to the binomial distribution with \(n=60\) and \(p=0.70\) to calculate various probabilities of interest, where \(x=\) number of correct responses on the MENT test for a patient who is trying to fake the test. a. Verify that it is appropriate to use a normal approximation to the binomial distribution in this situation. b. Approximate the following probabilities: i. \(\quad P(x=42)\) ii. \(P(x<42)\) iii. \(P(x \leq 42)\) c. Explain why the probabilities calculated in Part (b) are not all equal. d. The authors calculated the exact binomial probability of a score of 42 or less for someone who is not faking the test. Using \(p=0.96\), they found $$ P(x \leq 42)=.000000000013 $$ Explain why the authors calculated this probability using the binomial formula rather than using a normal approximation. e. The authors propose that someone who scores 42 or less on the MENT exam is faking the test. Explain why this is reasonable, using some of the probabilities from Parts (b) and (d) as justification.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free