Chapter 6: Problem 51
Consider babies born in the "normal" range of \(37-43\) weeks gestational age. The paper referenced in Example 6.21 ("Fetal Growth Parameters and Birth Weight: Their Relationship to Neonatal Body Composition," Ultrasound in Obstetrics and Gynecology [2009]: \(441-446\) ) suggests that a normal distribution with mean \(\mu=3,500\) grams and standard deviation \(\sigma=600\) grams is a reasonable model for the probability distribution of \(x=\) birth weight of a randomly selected full-term baby. a. What is the probability that the birth weight of a randomly selected full- term baby exceeds \(4,000 \mathrm{~g} ?\) is between 3,000 and \(4,000 \mathrm{~g}\) ? b. What is the probability that the birth weight of a randomly selected full- term baby is either less than \(2,000 \mathrm{~g}\) or greater than \(5,000 \mathrm{~g}\) ? c. What is the probability that the birth weight of a randomly selected full- term baby exceeds 7 pounds? (Hint: \(1 \mathrm{lb}=453.59 \mathrm{~g} .)\) d. How would you characterize the most extreme \(0.1 \%\) of all full-term baby birth weights?