Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A machine that cuts corks for wine bottles operates in such a way that the distribution of the diameter of the corks produced is well approximated by a normal distribution with mean \(3 \mathrm{~cm}\) and standard deviation \(0.1 \mathrm{~cm} .\) The specifications call for corks with diameters between 2.9 and \(3.1 \mathrm{~cm}\). A cork not meeting the specifications is considered defective. (A cork that is too small leaks and causes the wine to deteriorate; a cork that is too large doesn't fit in the bottle.) What proportion of corks produced by this machine are defective?

Short Answer

Expert verified
The proportion of corks produced by the machine that are defective is approximately 31.73%

Step by step solution

01

Standardize the values

According to the formula \(Z = \frac{(X - \mu)}{\sigma}\), where X is the value, \(\mu\) is the mean, and \(\sigma\) is the standard deviation, standardize the lower limit (2.9cm) and the upper limit (3.1cm). This will give the standard deviations away from the mean.
02

Calculate the Z-scores

Use the formula from the previous step, substituting 2.9cm for \(X\) for the lower limit, and 3.1cm for \(X\) for the upper limit. This yields \(Z_{lower} = \frac{(2.9 - 3)}{0.1} = -1\) and \(Z_{upper}= \frac{(3.1 - 3)}{0.1} = 1\).
03

Calculate the proportion within the limits

Using Z-table or technology for Normal Distribution, find the proportion of values that fall within the range Z = -1 to Z = 1. This reflects corks that are not defective. The value for this range is 0.6827.
04

Calculate the proportion of defective corks

Subtract the proportion found in Step 3 from 1 to get the proportion of corks that fall outside of the non-defective range (i.e., defective corks). This gives: 1 - 0.6827 = 0.3173. So, approximately 31.73% corks produced by this machine are defective.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(z\) denote a random variable that has a standard normal distribution. Determine each of the following probabilities: a. \(P(z<2.36)\) b. \(P(z \leq 2.36)\) c. \(P(z<-1.23)\) d. \(P(1.142)\) g. \(P(z \geq-3.38)\) h. \(P(z<4.98)\)

A box contains five slips of paper, marked \(\$ 1, \$ 1, \$ 1, \$ 10,\) and \(\$ 25 .\) The winner of a contest selects two slips of paper at random and then gets the larger of the dollar amounts on the two slips. Define a random variable \(w\) by \(w=\) amount awarded. Determine the probability distribution of \(w\). (Hint: Think of the slips as numbered \(1,2,3,4,\) and \(5 .\) An outcome of the experiment will consist of two of these numbers.)

Suppose that \(5 \%\) of cereal boxes contain a prize and the other \(95 \%\) contain the message, "Sorry, try again." Consider the random variable \(x,\) where \(x=\) number of boxes purchased until a prize is found. a. What is the probability that at most two boxes must be purchased? b. What is the probability that exactly four boxes must be purchased? c. What is the probability that more than four boxes must be purchased?

Determine the following standard normal (z) curve areas: a. The area under the \(z\) curve to the left of 1.75 b. The area under the \(z\) curve to the left of -0.68 c. The area under the \(z\) curve to the right of 1.20 d. The area under the \(z\) curve to the right of -2.82 e. The area under the \(z\) curve between -2.22 and 0.53 f. The area under the \(z\) curve between -1 and 1 g. The area under the \(z\) curve between -4 and 4

A symptom validity test (SVT) is sometimes used to confirm diagnosis of psychiatric disorders. The paper "Developing a Symptom Validity Test for Posttraumatic Stress Disorder: Application of the Binomial Distribution" ( Journal of Anxiety Disorders [2008]: 1297-1302) investigated the use of SVTs in the diagnosis of post-traumatic stress disorder. One SVT proposed is a 60 -item test (called the MENT test), where each item has only a correct or incorrect response. The MENT test is designed so that responses to the individual questions can be considered independent of one another. For this reason, the authors of the paper believe that the score on the MENT test can be viewed as a binomial random variable with \(n=60 .\) The MENT test is designed to help in distinguishing fictitious claims of post-traumatic stress disorder. The items on the test are written so that the correct response to an item should be relatively obvious, even to people suffering from stress disorders. Researchers have found that a patient with a fictitious claim of stress disorder will try to "fake" the test, and that the probability of a correct response to an item for these patients is 0.7 (compared to 0.96 for other patients). The authors used a normal approximation to the binomial distribution with \(n=60\) and \(p=0.70\) to calculate various probabilities of interest, where \(x=\) number of correct responses on the MENT test for a patient who is trying to fake the test. a. Verify that it is appropriate to use a normal approximation to the binomial distribution in this situation. b. Approximate the following probabilities: i. \(\quad P(x=42)\) ii. \(P(x<42)\) iii. \(P(x \leq 42)\) c. Explain why the probabilities calculated in Part (b) are not all equal. d. The authors calculated the exact binomial probability of a score of 42 or less for someone who is not faking the test. Using \(p=0.96\), they found $$ P(x \leq 42)=.000000000013 $$ Explain why the authors calculated this probability using the binomial formula rather than using a normal approximation. e. The authors propose that someone who scores 42 or less on the MENT exam is faking the test. Explain why this is reasonable, using some of the probabilities from Parts (b) and (d) as justification.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free