Chapter 6: Problem 42
Let \(z\) denote a random variable that has a standard normal distribution.
Determine each of the following probabilities:
a. \(P(z<2.36)\)
b. \(P(z \leq 2.36)\)
c. \(P(z<-1.23)\)
d. \(P(1.14
Chapter 6: Problem 42
Let \(z\) denote a random variable that has a standard normal distribution.
Determine each of the following probabilities:
a. \(P(z<2.36)\)
b. \(P(z \leq 2.36)\)
c. \(P(z<-1.23)\)
d. \(P(1.14
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the variable \(x=\) time required for a college student to complete a standardized exam. Suppose that for the population of students at a particular university, the distribution of \(x\) is well approximated by a normal curve with mean 45 minutes and standard deviation 5 minutes. a. If 50 minutes is allowed for the exam, what proportion of students at this university would be unable to finish in the allotted time? b. How much time should be allowed for the exam if you wanted \(90 \%\) of the students taking the test to be able to finish in the allotted time? c. How much time is required for the fastest \(25 \%\) of all tudents to complete the exam
A gasoline tank for a certain car is designed to hold 15 gallons of gas. Suppose that the random variable \(x=\) actual capacity of a randomly selected tank has a distribution that is well approximated by a normal curve with mean 15.0 gallons and standard deviation 0.1 gallon. a. What is the probability that a randomly selected tank will hold at most 14.8 gallons? b. What is the probability that a randomly selected tank will hold between 14.7 and 15.1 gallons? c. If two such tanks are independently selected, what is the probability that both hold at most 15 gallons?
A machine producing vitamin \(\mathrm{E}\) capsules operates so that the actual amount of vitamin \(\mathrm{E}\) in each capsule is normally distributed with a mean of \(5 \mathrm{mg}\) and a standard deviation of \(0.05 \mathrm{mg}\). What is the probability that a randomly selected capsule contains less than \(4.9 \mathrm{mg}\) of vitamin \(\mathrm{E}\) ? At least \(5.2 \mathrm{mg}\) of vitamin \(\mathrm{E}\) ?
Suppose that \(65 \%\) of all registered voters in a certain area favor a seven- day waiting period before purchase of a handgun. Among 225 randomly selected registered voters, what is the probability that a. At least 150 favor such a waiting period? b. More than 150 favor such a waiting period? c. Fewer than 125 favor such a waiting period?
Suppose \(y=\) the number of broken eggs in a randomly selected carton of one dozen eggs. The probability distribution of \(y\) is as follows: $$ \begin{array}{lccccc} y & 0 & 1 & 2 & 3 & 4 \\ p(y) & 0.65 & 0.20 & 0.10 & 0.04 & 0.01 \end{array} $$ a. Calculate and interpret \(\mu_{y}\). (Hint: See Example 6.13) b. In the long run, for what percentage of cartons is the number of broken eggs less than \(\mu_{y} ?\) Does this surprise you? c. Explain why \(\mu_{y}\) is not equal to \(\frac{0+1+2+3+4}{5}=2.0\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.