Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A new battery's voltage may be acceptable (A) or unacceptable (U). A certain flashlight requires two batteries, so batteries will be independently selected and tested until two acceptable ones have been found. Suppose that \(80 \%\) of all batteries have acceptable voltages, and let \(y\) denote the number of batteries that must be tested. a. What are the possible values of \(y\) ? b. What is \(p(2)=P(y=2) ?\) c. What is \(p(3) ?\) (Hint: There are two different outcomes that result in \(y=3\).)

Short Answer

Expert verified
a. The possible values for y are any integer 2 or greater. b. The value of P(y=2), the probability that exactly two batteries need to be tested to find two acceptable ones, is 0.64. c. The value of P(y=3), the probability that three batteries need to be tested to find two acceptable ones, is 0.288.

Step by step solution

01

Determine possible values for y

Since two acceptable batteries are needed, the minimum number of batteries that must be tested is two. So the smallest possible value of y is 2. Since there is a chance that a battery could be unacceptable, there is no upper limit to the possible values of y. In other words, y could be any positive integer 2 or greater, i.e. y ∈ {2, 3, 4, 5, ...}.
02

Calculate P(y=2)

The value P(y=2) will represent the scenario where both tested batteries are acceptable. This would be a simple case of multiplying the independent probabilities together. Since the probability of a battery being acceptable is 0.8, the equation is \(P(y=2) = 0.8 × 0.8 = 0.64\). So, the probability that exactly 2 batteries are required to be tested to find two acceptable batteries is \(0.64\).
03

Calculate P(y=3)

Calculating P(y=3) is a bit more complex since we have to consider two possibilities: the first two batteries tested could both be unacceptable and the third could be acceptable, or the first battery could be unacceptable and the next two could be acceptable. For the first case, we have probability \(P = 0.2 × 0.2 × 0.8 = 0.032\), for the second case we have probability \(P = 2 × (0.2 × 0.8 × 0.8 = 0.128)\). We multiply the second case by 2 as this event can happen in two ways (either the first or the second battery tested is unacceptable). Adding these two possibilities together, we get \(P(y=3) = 0.032 + 0.128 × 2 = 0.288\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Classify each of the following random variables as either discrete or continuous: a. The fuel efficiency (mpg) of an automobile b. The amount of rainfall at a particular location during the next year c. The distance that a person throws a baseball d. The number of questions asked during a 1 -hour lecture e. The tension (in pounds per square inch) at which a tennis racket is strung f. The amount of water used by a household during a given month g. The number of traffic citations issued by the highway patrol in a particular county on a given day

Twenty-five percent of the customers of a grocery store use an express checkout. Consider five randomly selected customers, and let \(x\) denote the number among the five who use the express checkout. a. Calculate \(p(2),\) that is, \(P(x=2)\). b. Calculate \(P(x \leq 1)\). c. Calculate \(P(x \geq 2)\). (Hint: Make use of your answer to Part (b).) d. Calculate \(P(x \neq 2)\).

A box contains four slips of paper marked \(1,2,3,\) and 4. Two slips are selected without replacement. List the possible values for each of the following random variables: a. \(x=\) sum of the two numbers b. \(y=\) difference between the first and second numbers (first - second) c. \(z=\) number of slips selected that show an even number d. \(w=\) number of slips selected that show a 4

Suppose that for a given computer salesperson, the probability distribution of \(x=\) the number of systems sold in 1 month is given by the following table: $$ \begin{array}{lcccccccc} x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ p(x) & 0.05 & 0.10 & 0.12 & 0.30 & 0.30 & 0.11 & 0.01 & 0.01 \end{array} $$ a. Find the mean value of \(x\) (the mean number of systems sold). b. Find the variance and standard deviation of \(x\). How would you interpret these values? c. What is the probability that the number of systems sold is within 1 standard deviation of its mean value? d. What is the probability that the number of systems sold is more than 2 standard deviations from the mean?

Let \(x\) denote the duration of a randomly selected pregnancy (the time elapsed between conception and birth). Accepted values for the mean value and standard deviation of \(x\) are 266 days and 16 days, respectively. Suppose that the probability distribution of \(x\) is (approximately) normal. a. What is the probability that the duration of a randomly selected pregnancy is between 250 and 300 days? b. What is the probability that the duration is at most 240 days? c. What is the probability that the duration is within 16 days of the mean duration? d. A "Dear Abby" column dated January 20, 1973, contained a letter from a woman who stated that the duration of her pregnancy was exactly 310 days. (She wrote that the last visit with her husband, who was in the navy, occurred 310 days before the birth of her child.) What is the probability that the duration of pregnancy is at least 310 days? Does this probability make you a bit skeptical of the claim? e. Some insurance companies will pay the medical expenses associated with childbirth only if the insurance has been in effect for more than 9 months ( 275 days). This restriction is designed to ensure that benefits are only paid if conception occurred during coverage. Suppose that conception occurred 2 weeks after coverage began. What is the probability that the insurance company will refuse to pay benefits because of the 275 -day requirement?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free