Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Starting at a particular time, each car entering an intersection is observed to see whether it turns left (L) or right (R) or goes straight ahead (S). The experiment terminates as soon as a car is observed to go straight. Let \(x\) denote the number of cars observed. What are possible \(x\) values? List five different outcomes and their associated \(x\) values. (Hint: See Example 6.2)

Short Answer

Expert verified
The possible \( x \) values are 3, 2, 3, 4, and 1 for the outcomes \( LRS \), \( RS \), \( LLS \), \( RLRS \), and \( S \), respectively.

Step by step solution

01

Understanding the experiment process

In the intersection, each passing car has 3 options: it can either turn right (R), turn left (L), or go straight (S). We start to count the number of cars when the observation begins and stop counting when we see a car going straight.
02

Define possible outcomes

An outcome is observed when a car goes straight, ending the experiment. Prior to this, the car could have either turned left or right. Consequently, the possible outcomes will be sequences of L and/or R followed by S. For example, \( LRS \), \( RS \), \( LLS \), \( RLRS \}, and \( S \) are all possible outcomes.
03

Corresponding x values

The value of \( x \) is equivalent to the number of cars observed during each of these outcomes. For \( LRS \), \( x = 3 \); for \( RS \), \( x = 2 \); for \( LLS \), \( x = 3 \); for \( RLRS \), \( x = 4 \); and for \( S \) alone, \( x = 1 \).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Sophie is a dog who loves to play catch. Unfortunately, she isn't very good at this, and the probability that she catches a ball is only \(0.1 .\) Let \(x\) be the number of tosses required until Sophie catches a ball. a. Does \(x\) have a binomial or a geometric distribution? b. What is the probability that it will take exactly two tosses for Sophie to catch a ball? c. What is the probability that more than three tosses will be required?

A coin is flipped 25 times. Let \(x\) be the number of flips that result in heads (H). Consider the following rule for deciding whether or not the coin is fair: Judge the coin fair if \(8 \leq x \leq 17\). Judge the coin biased if either \(x \leq 7\) or \(x \geq 18\). a. What is the probability of judging the coin biased when it is actually fair? b. Suppose that a coin is not fair and that \(P(\mathrm{H})=0.9\). What is the probability that this coin would be judged fair? What is the probability of judging a coin fair if \(P(\mathrm{H})=0.1 ?\) c. What is the probability of judging a coin fair if \(P(\mathrm{H})=0.6 ?\) if \(P(\mathrm{H})=0.4 ?\) Why are these probabilities large compared to the probabilities in Part (b)? d. What happens to the "error probabilities" of Parts (a) and \((b)\) if the decision rule is changed so that the coin is judged fair if \(7 \leq x \leq 18\) and unfair otherwise? Is this a better rule than the one first proposed? Explain.

Consider the following 10 observations on the lifetime (in hours) for a certain type of power supply: $$ \begin{array}{lllll} 152.7 & 172.0 & 172.5 & 173.3 & 193.0 \\ 204.7 & 216.5 & 234.9 & 262.6 & 422.6 \end{array} $$ Construct a normal probability plot, and comment on whether it is reasonable to think that the distribution of power supply lifetime is approximately normal. (The normal scores for a sample of size 10 are -1.539,-1.001,-0.656 , \(-0.376,-0.123,0.123,0.376,0.656,1.001,\) and \(1.539 .)\)

A new battery's voltage may be acceptable (A) or unacceptable (U). A certain flashlight requires two batteries, so batteries will be independently selected and tested until two acceptable ones have been found. Suppose that \(80 \%\) of all batteries have acceptable voltages, and let \(y\) denote the number of batteries that must be tested. a. What are the possible values of \(y\) ? b. What is \(p(2)=P(y=2) ?\) c. What is \(p(3) ?\) (Hint: There are two different outcomes that result in \(y=3\).)

Example 6.14 gave the probability distributions shown below for \(x=\) number of flaws in a randomly selected glass panel from Supplier 1 \(y=\) number of flaws in a randomly selected glass panel from Supplier 2 for two suppliers of glass used in the manufacture of flat screen TVs. If the manufacturer wanted to select a single supplier for glass panels, which of these two suppliers would you recommend? Justify your choice based on consideration of both center and variability. $$ \begin{array}{lcccclcccc} \boldsymbol{x} & 0 & 1 & 2 & 3 & \boldsymbol{y} & 0 & 1 & 2 & 3 \\ \boldsymbol{p}(\boldsymbol{x}) & 0.4 & 0.3 & 0.2 & 0.1 & \boldsymbol{p}(\boldsymbol{y}) & 0.2 & 0.6 & 0.2 & 0 \end{array} $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free