Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The Australian newspaper The Mercury (May 30,1995\()\) reported that based on a survey of 600 reformed and current smokers, \(11.3 \%\) of those who had attempted to quit smoking in the previous 2 years had used a nicotine aid (such as a nicotine patch). It also reported that \(62 \%\) of those who had quit smoking without a nicotine aid began smoking again within 2 weeks and \(60 \%\) of those who had used a nicotine aid began smoking again within 2 weeks. If a smoker who is trying to quit smoking is selected at random, are the events selected smoker who is trying to quit uses a nicotine aid and selected smoker who has attempted to quit begins smoking again within 2 weeks independent or dependent events? Justify your answer using the given information.

Short Answer

Expert verified
The events that a selected smoker who is trying to quit uses a nicotine aid and begins smoking again within two weeks are dependent events.

Step by step solution

01

Define the events

Let us define the following events: Event A is a smoker uses a nicotine aid. Event B is a smoker starts smoking again within two weeks. From the problem, it's given that the probability of each event occurring is as follows: \(P(A) = 0.113\), \(P(B) = 0.62\) without a nicotine aid and \(0.60\) with a nicotine aid.
02

Determine the joint probability

Since only those who quit smoking are considered for restarting smoking again, the chances of a smoker using a nicotine aid and starting smoking again is given by the smokers who used a nicotine aid and started smoking which is \(0.113 \times 0.60 = 0.0678\), denoted \(P(A \cap B)\).
03

Check for independence

Two events A and B are independent if and only if \(P(A \cap B) = P(A) \times P(B)\). We know \(P(A \cap B) = 0.0678\), and \(P(A) \times P(B) = 0.113 \times 0.62 = 0.07006\). Since these two quantities are not equal, the two events A and B are dependent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Four students must work together on a group project. They decide that each will take responsibility for a particular part of the project, as follows: Because of the way the tasks have been divided, one student must finish before the next student can begin work. To ensure that the project is completed on time, a time line is established, with a deadline for each team member. If any one of the team members is late, the timely completion of the project is jeopardized. Assume the following probabilities: 1\. The probability that Maria completes her part on time is 0.8 2\. If Maria completes her part on time, the probability that Alex completes on time is \(0.9,\) but if Maria is late, the probability that Alex completes on time is only 0.6 . 3\. If Alex completes his part on time, the probability that Juan completes on time is \(0.8,\) but if \(\mathrm{Alex}\) is late, the probability that Juan completes on time is only 0.5 . 4\. If Juan completes his part on time, the probability that Jacob completes on time is \(0.9,\) but if Juan is late, the probability that Jacob completes on time is only 0.7 . Use simulation (with at least 20 trials) to estimate the probability that the project is completed on time. Think carefully about this one. For example, you might use a random digit to represent each part of the project (four in all). For the first digit (Maria's part), \(1-8\) could represent on time, and 9 and 0 could represent late. Depending on what happened with Maria (late or on time), you would then look at the digit representing Alex's part. If Maria was on time, \(1-9\) would represent on time for Alex, but if Maria was late, only \(1-6\) would represent on time. The parts for Juan and Jacob could be handled similarly.

A rental car company offers two options when a car is rented. A renter can choose to pre-purchase gas or not and can also choose to rent a GPS device or not. Suppose that the events \(A=\) event that gas is pre-purchased \(B=\) event that a GPS is rented are independent with \(P(A)=0.20\) and \(P(B)=0.15\). a. Construct a "hypothetical 1000 " table with columns corresponding to whether or not gas is pre-purchased and rows corresponding to whether or not a GPS is rented. b. Use the table to find \(P(A \cup B)\). Give a long-run relative frequency interpretation of this probability.

Consider a chance experiment that consists of selecting a customer at random from all people who purchased a car at a large car dealership during 2010 . a. In the context of this chance experiment, give an example of two events that would be mutually exclusive. b. In the context of this chance experiment, give an example of two events that would not be mutually exclusive.

Suppose that \(20 \%\) of all teenage drivers in a certain county received a citation for a moving violation within the past year. Assume in addition that \(80 \%\) of those receiving such a citation attended traffic school so that the citation would not appear on their permanent driving record. Consider the chance experiment that consists of randomly selecting a teenage driver from this county. a. One of the percentages given in the problem specifies an unconditional probability, and the other percentage specifies a conditional probability. Which one is the conditional probability, and how can you tell? b. Suppose that two events \(E\) and \(F\) are defined as follows: \(E=\) selected driver attended traffic school \(F=\) selected driver received such a citation Use probability notation to translate the given information into two probability statements of the form \(P(\ldots)=\) probability value.

The article "Anxiety Increases for Airline Passengers After Plane Crash" (San Luis Obispo Tribune, November 13,2001 ) reported that air passengers have a 1 in 11 million chance of dying in an airplane crash. This probability was then interpreted as "You could fly every day for 26,000 years before your number was up." Comment on why this probability interpretation is misleading.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free