Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The student council for a school of science and math has one representative from each of five academic departments: Biology (B), Chemistry (C), Mathematics (M), Physics (P), and Statistics (S). Two of these students are to be randomly selected for inclusion on a university-wide student committee. a. What are the 10 possible outcomes? b. From the description of the selection process, all outcomes are equally likely. What is the probability of each outcome? c. What is the probability that one of the committee members is the statistics department representative? d. What is the probability that both committee members come from laboratory science departments?

Short Answer

Expert verified
a. The 10 possible outcomes. b. The probability of each outcome is \(\frac{1}{10}\). c. The probability of one member being the statistics representative is 0.4. d. The probability of both members from laboratory departments is 0.3.

Step by step solution

01

Determine possible outcomes

To solve this, combinations formula can be used. In a combination, the order does not matter. There are 5 departments and 2 representatives need to be chosen. The formula for combinations is \(C(n, r) = \frac{n!}{r!(n-r)!}\) where n is the total number of options (5 departments) and r is the number of items to choose (2 representatives). This formula gives 10 possible outcomes.
02

Calculate the probability of each outcome

Since the two students are to be randomly selected, and there is no indication that there is any weighting or bias towards any particular department, each of the possible combinations is equally likely. Therefore, the probability of any specific outcome is thus \(\frac{1}{10}\).
03

Calculate the probability of the statistics representative being selected

There are 4 other departments to choose the second representative from. Which gives 4 possible outcomes when a statistics representative is included, which gives the probability \(\frac{4}{10} = 0.4\).
04

Calculate the probability that both members are from laboratory science departments

The laboratory science departments are Biology, Chemistry and Physics. We assume the order doesn't matter, so we find the combinations of 2 committee members from 3 departments by using the combinations formula as in Step 1 to get 3 possible outcomes. This gives the probability \(\frac{3}{10}= 0.3\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a small city, approximately \(15 \%\) of those eligible are called for jury duty in any one calendar year. People are selected for jury duty at random from those eligible, and the same individual cannot be called more than once in the same year. What is the probability that an eligible person in this city is selected in both of the next 2 years? All of the next 3 years?

According to The Chronicle for Higher Education (Aug. 26, 2011), there were 787,325 Associate degrees awarded by U.S. community colleges in the \(2008-2009\) academic year. A total of 488,142 of these degrees were awarded to women. a. If a person who received an Associate degree in 2008 2009 is selected at random, what is the probability that the selected person will be female? b. What is the probability that the selected person will be male?

A study of how people are using online services for medical consulting is described in the paper "Internet Based Consultation to Transfer Knowledge for Patients Requiring Specialized Care" (British Medical Journal [2003]: \(696-699)\). Patients using a particular online site could request one or both (or neither) of two services: specialist opinion and assessment of pathology results. The paper reported that \(98.7 \%\) of those using the service requested a specialist opinion, \(35.4 \%\) requested the assessment of pathology results, and \(34.7 \%\) requested both a specialist opinion and assessment of pathology results. Consider the following two events: \(S=\) event that a specialist opinion is requested \(A=\) event that an assessment of pathology results is requested a. What are the values of \(P(S), P(A)\), and \(P(S \cap A)\) ? b. Use the given probability information to set up a "hypothetical 1000 " table with columns corresponding to \(S\) and not \(S\) and rows corresponding to \(A\) and \(\operatorname{not} A .\) c. Use the table to find the following probabilities: i. the probability that a request is for neither a specialist opinion nor assessment of pathology results. ii. the probability that a request is for a specialist opinion or an assessment of pathology results.

An online store offers two methods of shipping-regular ground service and an expedited 2 -day shipping. Customers may also choose whether or not to have a purchase gift wrapped. Suppose that the events \(E=\) event that the customer chooses expedited shipping \(G=\) event that the customer chooses gift wrap are independent with \(P(E)=0.26\) and \(P(G)=0.12\). a. Construct a "hypothetical 1000 " table with columns corresponding to whether or not expedited shipping is chosen and rows corresponding to whether or not gift wrap is selected. b. Use the table to calculate \(P(E \cup G)\). Give a long-run relative frequency interpretation of this probability.

The Associated Press (San Luis Obispo Telegram-Tribune, August 23,1995 ) reported the results of a study in which schoolchildren were screened for tuberculosis (TB). It was reported that for Santa Clara County, California, the proportion of all tested kindergartners who were found to have TB was 0.0006 . The corresponding proportion for recent immigrants (thought to be a high-risk group) was \(0.0075 .\) Suppose that a Santa Clara County kindergartner is to be selected at random. Are the events selected student is a recent immigrant and selected student has \(T B\) independent or dependent events? Justify your answer using the given information.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free