Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A mutual fund company offers its customers several different funds: a money market fund, three different bond funds, two stock funds, and a balanced fund. Among customers who own shares in just one fund, the percentages of customers in the different funds are as follows: $$ \begin{array}{lr} \text { Money market } & 20 \% \\ \text { Short-term bond } & 15 \% \\ \text { Intermediate-term bond } & 10 \% \\ \text { Long-term bond } & 5 \% \\ \text { High-risk stock } & 18 \% \\ \text { Moderate-risk stock } & 25 \% \\ \text { Balanced fund } & 7 \% \end{array} $$ A customer who owns shares in just one fund is to be selected at random. a. What is the probability that the selected individual owns shares in the balanced fund? b. What is the probability that the individual owns shares in a bond fund? c. What is the probability that the selected individual does not own shares in a stock fund?

Short Answer

Expert verified
a. The probability that the selected individual owns shares in the balanced fund is 7%. \ b. The probability that the selected individual owns shares in a bond fund is 30%. \ c. The probability that the selected individual does not own shares in a stock fund is 57%.

Step by step solution

01

Probability of owning shares in the balanced fund

The problem states that 7% of all customers own shares in the balanced fund. Therefore, if a customer is chosen at random, the probability of them owning shares in the balanced fund is also 7%. Since probability is the ratio of the number of favourable outcomes to the total number of possible outcomes, this simply translates the percentage into a probability.
02

Probability of owning shares in a bond fund

In order to find the probability that the selected individual owns shares in a bond fund, you need to add the probabilities of owning shares in each individual bond fund. From the data given, 15% own shares in the short-term bond, 10% own shares in the intermediate-term bond and 5% own shares in the long-term bond. The total probability here would be 15% + 10% + 5% = 30%, so the probability of owning shares in any bond fund is 30%.
03

Probability of not owning shares in a stock fund

In this case, we need to calculate the probability of the customer not owning shares in a stock fund. This is simply 1 (representing 100%) minus the total percentage of customers who own shares in a stock fund. From the data given, 18% own shares in high-risk stock and 25% own shares in moderate-risk stock. Thus, the probability of not owning shares in a stock fund = 100% - (18% + 25%) = 100% - 43% = 57%.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

"N.Y. Lottery Numbers Come Up \(9-1-1\) on \(9 / 11\) " was the headline of an article that appeared in the San Francisco Chronicle (September 13,2002 ). More than 5,600 people had selected the sequence \(9-1-1\) on that date, many more than is typical for that sequence. A professor at the University of Buffalo was quoted as saying, "I'm a bit surprised, but I wouldn't characterize it as bizarre. It's randomness. Every number has the same chance of coming up. People tend to read into these things. I'm sure that whatever numbers come up tonight, they will have some special meaning to someone, somewhere." The New York state lottery uses balls numbered \(0-9\) circulating in three separate bins. One ball is chosen at random from each bin. What is the probability that the sequence \(9-1-1\) would be selected on any particular day?

The probability of getting a king when a card is selected at random from a standard deck of 52 playing cards is \(\frac{1}{13}\). a. Give a relative frequency interpretation of this probability. b. Express the probability as a decimal rounded to three decimal places. Then complete the following statement: If a card is selected at random, I would expect to see a king about_____ times in 1000 .

An airline reports that for a particular flight operating daily between Phoenix and Atlanta, the probability of an on-time arrival is \(0.86 .\) Give a relative frequency interpretation of this probability.

A single-elimination tournament with four players is to be held. A total of three games will be played. In Game 1 , the players seeded (rated) first and fourth play. In Game 2 , the players seeded second and third play. In Game \(3,\) the winners of Games 1 and 2 play, with the winner of Game 3 declared the tournament winner. Suppose that the following probabilities are known: \(P(\) Seed 1 defeats Seed 4\()=0.8\) \(P(\) Seed 1 defeats \(\operatorname{Seed} 2)=0.6\) \(P(\) Seed 1 defeats \(\operatorname{Seed} 3)=0.7\) \(P(\) Seed 2 defeats \(\operatorname{Seed} 3)=0.6\) \(P(\) Seed 2 defeats Seed 4\()=0.7\) \(P(\) Seed 3 defeats Seed 4) \(=0.6\) a. How would you use random digits to simulate Game 1 of this tournament? b. How would you use random digits to simulate Game 2 of this tournament? c. How would you use random digits to simulate the third game in the tournament? (This will depend on the outcomes of Games 1 and \(2 .\) ) d. Simulate one complete tournament, giving an explanation for each step in the process. e. Simulate 10 tournaments, and use the resulting information to estimate the probability that the first seed wins the tournament. f. Ask four classmates for their simulation results. Along with your own results, this should give you information on 50 simulated tournaments. Use this information to estimate the probability that the first seed wins the tournament. g. Why do the estimated probabilities from Parts (e) and (f) differ? Which do you think is a better estimate of the actual probability? Explain.

The following statement is from a letter to the editor that appeared in USA Today (September 3,2008 ): "Among Notre Dame's current undergraduates, our ethnic minority students \((21 \%)\) and international students \((3 \%)\) alone equal the percentage of students who are children of alumni (24\%). Add the \(43 \%\) of our students who receive need-based financial aid (one way to define working-class kids), and more than \(60 \%\) of our student body is composed of minorities and students from less affluent families." Do you think that the statement that more than \(60 \%\) of the student body is composed of minorities and students from less affluent families is likely to be correct? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free