Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A company that offers roadside assistance to drivers reports that the probability that a call for assistance will be to help someone who is locked out of his or her car is \(0.18 .\) Give a relative frequency interpretation of this probability.

Short Answer

Expert verified
In the long term, the company can expect about 18% of all their calls, or 18 out of every 100 calls, to be from people locked out of their cars.

Step by step solution

01

Understand the concept of relative frequency

Relative frequency gives a measure of the number of times a particular event occurs as a fraction of the total number of trials. It's often used as an estimate of probability. To attach a meaning to the abstract concept of probability in this case, we must talk in terms of the large number of trials.
02

Apply relative frequency to the given exercise

In this context, the given probability 0.18 means that if the company keeps receiving calls for assistance under the same conditions, then in the long run, about 18% of all calls or 18 out of every 100 calls will be from people who have locked themselves out of their cars.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a chance experiment that consists of selecting a student at random from a high school with 3,000 students. a. In the context of this chance experiment, give an example of two events that would be mutually exclusive. b. In the context of this chance experiment, give an example of two events that would not be mutually exclusive.

Consider the following two lottery-type games: Game 1: You pick one number between 1 and 50 . After you have made your choice, a number between 1 and 50 is selected at random. If the selected number matches the number you picked, you win. Game 2: You pick two numbers between 1 and 10 . After you have made your choices, two different numbers between 1 and 10 are selected at random. If the selected numbers match the two you picked, you win. a. The cost to play either game is \(\$ 1,\) and if you win you will be paid \(\$ 20 .\) If you can only play one of these games, which game would you pick and why? Use relevant probabilities to justify your choice. b. For either of these games, if you plan to play the game 100 times, would you expect to win money or lose money overall? Explain.

The Associated Press (San Luis Obispo Telegram-Tribune, August 23,1995 ) reported the results of a study in which schoolchildren were screened for tuberculosis (TB). It was reported that for Santa Clara County, California, the proportion of all tested kindergartners who were found to have TB was 0.0006 . The corresponding proportion for recent immigrants (thought to be a high-risk group) was \(0.0075 .\) Suppose that a Santa Clara County kindergartner is to be selected at random. Are the events selected student is a recent immigrant and selected student has \(T B\) independent or dependent events? Justify your answer using the given information.

A Nielsen survey of teens between the ages of 13 and 17 found that \(83 \%\) use text messaging and \(56 \%\) use picture messaging (“How Teens Use Media," Nielsen, June 2009). Use these percentages to explain why the two events \(T=\) event that a randomly selected teen uses text messaging and \(P=\) event that a randomly selected teen uses picture messaging cannot be mutually exclusive.

Each time a class meets, the professor selects one student at random to explain the solution to a homework problem. There are 40 students in the class, and no one ever misses class. Luke is one of these students. What is the probability that Luke is selected both of the next two times that the class meets? (Hint: See Example 5.8 )

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free