Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that an individual is randomly selected from the population of all adult males living in the United States. Let \(A\) be the event that the selected individual is over 6 feet in height, and let \(B\) be the event that the selected individual is a professional basketball player. Which do you think is larger, \(P(A \mid B)\) or \(P(B \mid A) ?\) Why?

Short Answer

Expert verified
The probability that a randomly chosen professional basketball player is over 6 feet tall (\(P(A \mid B)\)) is larger than the probability that a randomly chosen individual who is over 6 feet tall is a professional basketball player (\(P(B \mid A)\)). This is because the proportion of professional basketball players who are over 6 feet tall is very high, while the proportion of people over 6 feet tall who are professional basketball players is relatively small.

Step by step solution

01

Understanding the Probabilities

First, let's think about what these probabilities mean:\n\n1. \(P(A \mid B)\) is the probability that a randomly chosen professional basketball player is over 6 feet tall. Since professional basketball tends to favor taller individuals, this probability is likely quite high.\n\n2. \(P(B \mid A)\) is the probability that a randomly chosen individual who is over 6 feet tall is a professional basketball player. Although being tall could certainly be an advantage in basketball, there are many individuals who are over 6 feet tall and are not professional basketball players. Therefore, this probability is probably quite low.
02

Comparing the Probabilities

After understanding the two probabilities, comparing them will lead to a relatively clear result. \(P(A \mid B)\) is very likely to be larger than \(P(B \mid A)\). This is because that within the population of professional basketball players, the proportion that is over 6 feet is large, while within the population of males over 6 feet, the proportion that are professional basketball players is relatively small.
03

Understanding the Reason

The main reason for this difference in the probabilities boils down to the size of different populations. The total population of people over 6 feet is much larger than the total population of professional basketball players. Hence, even though being over 6 feet tall is a common characteristic among professional basketball players, professional basketball players only make up a small fraction of all people who are over 6 feet tall.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The article "Checks Halt over 200,000 Gun Sales" (San Luis Obispo Tribune, June 5,2000 ) reported that required background checks blocked 204,000 gun sales in \(1999 .\) The article also indicated that state and local police reject a higher percentage of would-be gun buyers than does the FBI, stating, "The FBI performed 4.5 million of the 8.6 million checks, compared with 4.1 million by state and local agencies. The rejection rate among state and local agencies was \(3 \%,\) compared with \(1.8 \%\) for the FBI." a. Use the given information to estimate \(P(F), P(S)\), \(P(R \mid F),\) and \(P(R \mid S),\) where \(F=\) event that a randomly selected gun purchase background check is performed by the \(\mathrm{FBI}, S=\) event that a randomly selected gun purchase background check is performed by a state or local agency, and \(R=\) event that a randomly selected gun purchase background check results in a blocked sale. b. Use the probabilities from Part (a) to create a "hypothetical \(1000 "\) table. Use the table to calculate \(P(S \mid R),\) and write a sentence interpreting this value in the context of this problem.

The probability of getting a king when a card is selected at random from a standard deck of 52 playing cards is \(\frac{1}{13}\). a. Give a relative frequency interpretation of this probability. b. Express the probability as a decimal rounded to three decimal places. Then complete the following statement: If a card is selected at random, I would expect to see a king about_____ times in 1000 .

An article in the New York Times reported that people who suffer cardiac arrest in New York City have only a 1 in 100 chance of survival. Using probability notation, an equivalent statement would be \(P(\) survival \()=0.01\) for people who suffer cardiac arrest in New York City. (The article attributed this poor survival rate to factors common in large cities: traffic congestion and difficulty finding victims in large buildings. Similar studies in smaller cities showed higher survival rates.) a. Give a relative frequency interpretation of the given probability. b. The basis for the New York Times article was a research study of 2,329 consecutive cardiac arrests in New York City. To justify the " 1 in 100 chance of survival" statement, how many of the 2,329 cardiac arrest sufferers do you think survived? Explain.

A student placement center has requests from five students for employment interviews. Three of these students are math majors, and the other two students are statistics majors. Unfortunately, the interviewer has time to talk to only two of the students. These two will be randomly selected from among the five. a. What is the sample space for the chance experiment of selecting two students at random? (Hint: You can think of the students as being labeled \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D},\) and \(\mathrm{E}\). One possible selection of two students is \(\mathrm{A}\) and \(\mathrm{B}\). There are nine other possible selections to consider.) b. Are the outcomes in the sample space equally likely? c. What is the probability that both selected students are statistics majors? d. What is the probability that both students are math majors? e. What is the probability that at least one of the students selected is a statistics major? f. What is the probability that the selected students have different majors?

The report "Improving Undergraduate Learning" (Social Science Research Council, 2011) summarizes data from a survey of several thousand college students. These students were thought to be representative of the population of all college students in the United States. When asked about an upcoming semester, \(68 \%\) said they would be taking a class that is reading-intensive (requires more than 40 pages of reading per week). Only \(50 \%\) said they would be taking a class that is writing-intensive (requires more than 20 pages of writing over the course of the semester). The percentage who said that they would be taking both a reading-intensive course and a writing-intensive course was \(42 \%\). a. Use the given information to set up a "hypothetical \(1000 "\) table. b. Use the table to find the following probabilities: i. the probability that a randomly selected student would be taking at least one of these intensive courses. ii. the probability that a randomly selected student would be taking one of these intensive courses, but not both. iii. the probability that a randomly selected student would be taking neither a reading-intensive nor a writing-intensive course.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free