Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The article "Checks Halt over 200,000 Gun Sales" (San Luis Obispo Tribune, June 5,2000 ) reported that required background checks blocked 204,000 gun sales in \(1999 .\) The article also indicated that state and local police reject a higher percentage of would-be gun buyers than does the FBI, stating, "The FBI performed 4.5 million of the 8.6 million checks, compared with 4.1 million by state and local agencies. The rejection rate among state and local agencies was \(3 \%,\) compared with \(1.8 \%\) for the FBI." a. Use the given information to estimate \(P(F), P(S)\), \(P(R \mid F),\) and \(P(R \mid S),\) where \(F=\) event that a randomly selected gun purchase background check is performed by the \(\mathrm{FBI}, S=\) event that a randomly selected gun purchase background check is performed by a state or local agency, and \(R=\) event that a randomly selected gun purchase background check results in a blocked sale. b. Use the probabilities from Part (a) to create a "hypothetical \(1000 "\) table. Use the table to calculate \(P(S \mid R),\) and write a sentence interpreting this value in the context of this problem.

Short Answer

Expert verified
The estimated probabilities are: \(P(F) = 0.523\), \(P(S) = 0.477\), \(P(R|F) = 0.018\), and \(P(R|S) = 0.03\). The hypothetical 1000 table as created based on these probabilities allows us to calculate: \(P(S|R) = 0.603\). This means that when a gun sale is blocked based on the background check, it is performed by a state or local agency about 60.3% of the time.

Step by step solution

01

Estimation of probabilities

Firstly, probability that a randomly selected gun purchase background check is performed by the FBI (\(P(F)\)) would be the ratio of checks performed by the FBI to the total checks, which is \(4.5\) million / \(8.6\) million = \(0.523\). Similarly, the probability of a check being performed by a state or local agency (\(P(S)\)) is \(4.1\) million / \(8.6\) million = \(0.477\). \n\n Secondly, from the given problem, it is clear that rejection rate among FBI checks is \(1.8\%\) and state/local agency checks is \(3\%\). Hence, \(P(R|F) = 0.018\) and \(P(R|S) = 0.03\).
02

Creating hypothethical 1000 table

Using the probabilities calculated, we create a hypothetical 1000 table. It will look something like this: \n\n | Probabilities | Performed by FBI | Performed by state or local agency | Total | | ----------- | ----------- | ----------- | ----------- | | Randomly selected check resulted in blocked sale | 9.414 (0.018*523) | 14.31 (0.03*477) | 23.724 | | Otherwise | 513.586 | 462.69 | 976.276 | | Total | 523 (P(F)*1000) | 477 (P(S)*1000) | 1000 |
03

Calculation and interpretation of \(P(S|R)\)

This represents the probability that a background check is done by a state or local agency given that the check resulted in a blocked sale. This can be calculated as the number of blocks under state/local category divided by the total blocks. Hence, \(P(S | R) = 14.31 / 23.724 = 0.603\). Interpreting this, it says that more than 60% of the times a background check results in a blocked sale, it is likely that the check was performed by a state or local agency.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A large retail store sells MP3 players. A customer who purchases an MP3 player can pay either by cash or credit card. An extended warranty is also available for purchase. Suppose that the events \(M=\) event that the customer paid by cash \(E=\) event that the customer purchased an extended warranty are independent with \(P(M)=0.47\) and \(P(E)=0.16\). a. Construct a "hypothetical 1000 " table with columns corresponding to cash or credit card and rows corresponding to whether or not an extended warranty is purchased. (Hint: See Example 5.9) b. Use the table to find \(P(M \cup E)\). Give a long-run relative frequency interpretation of this probability.

Suppose that \(20 \%\) of all teenage drivers in a certain county received a citation for a moving violation within the past year. Assume in addition that \(80 \%\) of those receiving such a citation attended traffic school so that the citation would not appear on their permanent driving record. Consider the chance experiment that consists of randomly selecting a teenage driver from this county. a. One of the percentages given in the problem specifies an unconditional probability, and the other percentage specifies a conditional probability. Which one is the conditional probability, and how can you tell? b. Suppose that two events \(E\) and \(F\) are defined as follows: \(E=\) selected driver attended traffic school \(F=\) selected driver received such a citation Use probability notation to translate the given information into two probability statements of the form \(P(\ldots)=\) probability value.

There are two traffic lights on Shelly's route from home to work. Let \(E\) denote the event that Shelly must stop at the first light, and define the event \(F\) in a similar manner for the second light. Suppose that \(P(E)=0.4, P(F)=0.3\), and \(P(E \cap F)=0.15 .\) (Hint: See Example 5.5) a. Use the given probability information to set up a "hypothetical \(1000 "\) table with columns corresponding to \(E\) and not \(E\) and rows corresponding to \(F\) and not \(F\). b. Use the table from Part (a) to find the following probabilities: i. the probability that Shelly must stop for at least one light (the probability of \(E \cup F)\). ii. the probability that Shelly does not have to stop at either light. iii. the probability that Shelly must stop at exactly one of the two lights. iv. the probability that Shelly must stop only at the first light.

The paper "Action Bias among Elite Soccer Goalkeepers: The Case of Penalty Kicks" ( Journal of Economic Psychology [2007]: \(606-621\) ) presents an interesting analysis of 286 penalty kicks in televised championship soccer games from around the world. In a penalty kick, the only players involved are the kicker and the goalkeeper from the opposing team. The kicker tries to kick a ball into the goal from a point located 11 meters away. The goalkeeper tries to block the ball from entering the goal. For each penalty kick analyzed, the researchers recorded the direction that the goalkeeper moved (jumped to the left, stayed in the center, or jumped to the right) and whether or not the penalty kick was successfully blocked. Consider the following events: \(L=\) the event that the goalkeeper jumps to the left \(C=\) the event that the goalkeeper stays in the center \(R=\) the event that the goalkeeper jumps to the right \(B=\) the event that the penalty kick is blocked Based on their analysis of the penalty kicks, the authors of the paper gave the following probability estimates: $$ \begin{array}{rrr} P(L)=0.493 & P(C)=0.063 & P(R)=0.444 \\ P(B \mid L)=0.142 & P(B \mid C)=0.333 & P(B \mid R)=0.126 \end{array} $$ a. For each of the given probabilities, write a sentence giving an interpretation of the probability in the context of this problem. b. Use the given probabilities to construct a "hypothetical 1000" table with columns corresponding to whether or not a penalty kick was blocked and rows corresponding to whether the goalkeeper jumped left, stayed in the center, or jumped right. (Hint: See Example 5.14) c. Use the table to calculate the probability that a penalty kick is blocked. d. Based on the given probabilities and the probability calculated in Part (c), what would you recommend to a goalkeeper as the best strategy when trying to defend against a penalty kick? How does this compare to what goalkeepers actually do when defending against a penalty kick?

An article in the New York Times reported that people who suffer cardiac arrest in New York City have only a 1 in 100 chance of survival. Using probability notation, an equivalent statement would be \(P(\) survival \()=0.01\) for people who suffer cardiac arrest in New York City. (The article attributed this poor survival rate to factors common in large cities: traffic congestion and difficulty finding victims in large buildings. Similar studies in smaller cities showed higher survival rates.) a. Give a relative frequency interpretation of the given probability. b. The basis for the New York Times article was a research study of 2,329 consecutive cardiac arrests in New York City. To justify the " 1 in 100 chance of survival" statement, how many of the 2,329 cardiac arrest sufferers do you think survived? Explain.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free