Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The paper "Digit Ratio as an Indicator of Numeracy Relative to Literacy in 7-Year-Old British Schoolchildren" (British Journal of Psychology [2008]: \(75-85\) ) investigated a possible relationship between \(x=\) digit ratio (the ratio of the length of the second finger to the length of the fourth finger) and \(y=\) difference between numeracy score and literacy score on a national assessment. (The digit ratio is thought to be inversely related to the level of prenatal testosterone exposure.) The authors concluded that children with smaller digit ratios tended to have larger differences in test scores, meaning that they tended to have a higher numeracy score than literacy score. This conclusion was based on a correlation coefficient of \(r=-0.22 .\) Does the value of the correlation coefficient indicate that there is a strong linear relationship? Explain why or why not.

Short Answer

Expert verified
No, the correlation coefficient of -0.22 does not indicate a strong linear relationship. It suggests only a weak negative linear relationship between the digit ratio and the difference in numeracy and literacy scores.

Step by step solution

01

Understand the Scale of Correlation Coefficient

Correlation coefficient values range between -1 and 1. The closer the value is to 1 or -1, the stronger the linear relationship. A positive correlation (closer to 1) means as one variable increases, so does the other, while a negative correlation (clother to -1) means as one variable increases, the other decreases.
02

Interpretation of the Given Correlation Coefficient

The given correlation coefficient value is -0.22. This value lies somewhat close to 0. This indicates that there is a weak negative linear relationship between the digit ratio and the difference between numeracy and literacy scores. In essence, as the digit ratio (x) decreases, the difference in test scores (y) tends to slightly increase, but this relationship is weak.
03

Concluding Remarks

Negative correlation of -0.22 does not indicate a strong linear relationship because it is not close to 1 or -1. It means there is only a weak inverse relationship between the digit ratio and the difference in test scores. Therefore, the conclusion that children with smaller digit ratios tend to have larger differences in test scores is not derived from a strong correlation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Briefly explain why it is important to consider the value of \(s\) in addition to the value of \(r^{2}\) when evaluating the usefulness of the least squares regression line.

It may seem odd, but biologists can tell how old a lobster is by measuring the concentration of pigment in the lobster's eye. The authors of the paper "Neurolipofuscin Is a Measure of Age in Panulirus argus, the Caribbean Spiny Lobster, in Florida" (Biological Bulletin [2007]: 55-66) wondered if it was sufficient to measure the pigment in just one eye, which would be the case if there is a strong relationship between the concentration in the right eye and the concentration in the left eye. Pigment concentration (as a percentage of tissue sample) was measured in both eyes for 39 lobsters, resulting in the following summary quantities (based on data from a graph in the paper): $$ \begin{array}{cll} n=39 & \sum_{x}=88.8 & \sum y=86.1 \\ \sum x y=281.1 & \sum x^{2}=288.0 & \sum y^{2}=286.6 \end{array} $$ An alternative formula for calculating the correlation coefficient that doesn't involve calculating the z-scores is $$ r=\frac{\sum_{x y}-\frac{\left(\sum x\right)\left(\sum y\right)}{n}}{\sqrt{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}} \sqrt{\sum y^{2}-\frac{\left(\sum y\right)^{2}}{n}}} $$ Use this formula to calculate the value of the correlation coefficient, and interpret this value.

A sample of automobiles traveling on a particular segment of a highway is selected. Each one travels at roughly a constant rate of speed, although speed does vary from auto to auto. Let \(x=\) speed and \(y=\) time needed to travel this segment. Would the sample correlation coefficient be closest to \(0.9,0.3,-0.3,\) or \(-0.9 ?\) Explain.

Data on \(x=\) size of a house (in square feet) and \(y=\) amount of natural gas used (therms) during a specified period were used to fit the least squares regression line. The slope was 0.017 and the intercept was \(-5.0 .\) Houses in this data set ranged in size from 1,000 to 3,000 square feet. a. What is the equation of the least squares regression line? b. What would you predict for gas usage for a 2,100 sq. ft. house? c. What is the approximate change in gas usage associated with a 1 sq. ft. increase in size? d. Would you use the least squares regression line to predict gas usage for a 500 sq. ft. house? Why or why not?

In a study of the relationship between TV viewing and eating habits, a sample of 548 ethnically diverse students from Massachusetts was followed over a 19 -month period (Pediatrics [2003]: 1321-1326). For each additional hour of television viewed per day, the number of fruit and vegetable servings per day was found to decrease on average by 0.14 serving. a. For this study, what is the response variable? What is the predictor variable? b. Would the least squares regression line for predicting number of servings of fruits and vegetables using number of hours spent watching TV have a positive or negative slope? Justify your choice.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free