Chapter 15: Problem 29
Explain the difference between situations that would lead to a chi-square goodness-of-fit test and those that would lead to a chi-square test of homogeneity.
Chapter 15: Problem 29
Explain the difference between situations that would lead to a chi-square goodness-of-fit test and those that would lead to a chi-square test of homogeneity.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe paper "Overweight Among Low-Income Preschool Children Associated with the Consumption of Sweet Drinks" (Pediatrics [2005]: 223-229) described a study of children who were underweight or normal weight at age 2 . Children in the sample were classified according to the number of sweet drinks consumed per day and whether or not the child was overweight one year after the study began. Is there evidence of an association between whether or not children are overweight after one year and the number of sweet drinks consumed? Assume that the sample of children in this study is representative of 2 - to 3 -year-old children, Test the appropriate hypotheses using a 0.05 significance level.
The press release titled "Nap Time" (pewresearch.org, July 2009) described results from a nationally representative survey of 1,488 adult Americans. The survey asked several demographic questions (such as gender, age, and income) and also included a question asking respondents if they had taken a nap in the past 24 hours. The press release stated that \(38 \%\) of the men surveyed and \(31 \%\) of the women surveyed reported that they had napped in the past 24 hours. For purposes of this exercise, suppose that men and women were equally represented in the sample. a. Use the given information to fill in observed cell counts for the following table: b. Use the data in the table from Part (a) to carry out a hypothesis test to determine if there is an association between gender and napping. c. The press release states that more men than women nap. Although this is true for the people in the sample, based on the result of your test in Part ( \(b\) ), is it reasonable to conclude that this holds for adult Americans in general? Explain.
What is the approximate \(P\) -value for the following values of \(X^{2}\) and df? a. \(X^{2}=14.44, \mathrm{df}=6\) b. \(X^{2}=16.91, \mathrm{df}=9\) c. \(X^{2}=32.32, \mathrm{df}=20\)
What is the approximate \(P\) -value for the following values of \(X^{2}\) and \(\mathrm{df} ?\) a. \(X^{2}=6.62, \mathrm{df}=3\) b. \(X^{2}=16.97, \mathrm{df}=10\) c. \(X^{2}=30.19, \mathrm{df}=17\)
A particular cell phone case is available in a choice of four different colors. A store sells all four colors. To test the hypothesis that sales are equally divided among the four colors, a random sample of 100 purchases is identified. a. If the resulting \(X^{2}\) value were \(6.4,\) what conclusion would you reach when using a test with significance level \(0.05 ?\) b. What conclusion would be appropriate at significance level 0.01 if \(X^{2}=15.3 ?\) c. If there were six different colors rather than just four, what would you conclude if \(X^{2}=13.7\) and a test with \(\alpha=0.05\) was used?
What do you think about this solution?
We value your feedback to improve our textbook solutions.