Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The paper "The Effect of Multitasking on the Grade Performance of Business Students" (Research in Higher Education Journal [2010]: 1-10) describes an experiment in which 62 undergraduate business students were randomly assigned to one of two experimental groups. Students in one group were asked to listen to a lecture but were told that they were permitted to use cell phones to send text messages during the lecture. Students in the second group listened to the same lecture but were not permitted to send text messages during the lecture. Afterwards, students in both groups took a quiz on material covered in the lecture. The researchers reported that the mean quiz score for students in the texting group was significantly lower than the mean quiz score for students in the no-texting group. In the context of this experiment, explain what it means to say that the texting group mean was significantly lower than the no-text group mean. (Hint: See discussion on page 578 )

Short Answer

Expert verified
The phrase 'significantly lower' in this context denotes that the observed difference in mean quiz scores between the two groups is unlikely to have happened by chance. It suggests that there is a statistically meaningful difference, often driven by an underlying factor – in this case, whether or not students were allowed to send text messages during the lecture.

Step by step solution

01

Understanding the Experiment

In the experiment, 62 undergraduate business students were split into two groups. One group was allowed to text during the lecture, while the other wasn't. After the lecture, all students took a quiz, and it was reported that the texting group scored 'significantly lower' than the no-texting group.
02

Meaning of 'Significantly Lower'

In a statistical context, 'significantly lower' doesn't just mean that the scores were lower. It implies that given the framework of the study, the probability of observing such a difference if there actually was no difference (i.e., if texting had no impact on quiz scores) is very small. This concept is known as the p-value.
03

Explanation of Significance

For the mean quiz score of the texting group to be significantly lower than the no-texting group, the p-value of this outcome would need to be less than a pre-defined level, usually 0.05 (5%). If the p-value is less than this threshold, the result is deemed statistically significant, and we reject the possibility that there was no effect. In this experiment, that would mean we reject the idea that texting has no impact on students' quiz scores. Instead, we would conclude that texting during the lecture does lead to lower quiz scores.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Can moving their hands help children learn math? This question was investigated in the paper "Gesturing Gives Children New Ideas About Math" (Psychological Science [2009]: \(267-272\) ). Eighty-five children in the third and fourth grades who did not answer any questions correctly on a test with six problems of the form \(3+2+8=+8\) were participants in an experiment. The children were randomly assigned to either a no-gesture group or a gesture group. All the children were given a lesson on how to solve problems of this form using the strategy of trying to make both sides of the equation equal. Children in the gesture group were also taught to point to the first two numbers on the left side of the equation with the index and middle finger of one hand and then to point at the blank on the right side of the equation. This gesture was supposed to emphasize that grouping is involved in solving the problem. The children then practiced additional problems of this type. All children were then given a test with six problems to solve, and the number of correct answers was recorded for each child. Summary statistics are given below. \begin{tabular}{lccc} & \(n\) & \(\bar{x}\) & \(s\) \\ No Gesture & 42 & 1.3 & 0.3 \\ Gesture & 43 & 2.2 & 0.4 \\ \hline \end{tabular} Is there evidence that learning the gesturing approach to solving problems of this type results in a significantly higher mean number of correct responses? Test the relevant hypotheses using \(\alpha=0.05\)

The article "An Alternative Vote: Applying Science to the Teaching of Science" (The Economist, May 12,2011 ) describes an experiment conducted at the University of British Columbia. A total of 850 engineering students enrolled in a physics course participated in the experiment. Students were randomly assigned to one of two experimental groups. Both groups attended the same lectures for the first 11 weeks of the semester. In the twelfth week, one of the groups was switched to a style of teaching where students were expected to do reading assignments prior to class, and then class time was used to focus on problem solving, discussion, and group work. The second group continued with the traditional lecture approach. At the end of the twelfth week, students were given a test over the course material from that week. The mean test score for students in the new teaching method group was \(74,\) and the mean test score for students in the traditional lecture group was \(41 .\) Suppose that the two groups each consisted of 425 students. Also suppose that the standard deviations of test scores for the new teaching method group and the traditional lecture method group were 20 and 24 , respectively. Estimate the difference in mean test score for the two teaching methods using a \(95 \%\) confidence interval. Be sure to give an interpretation of the interval.

The paper "Passenger and Cell Phone Conversations in Simulated Driving" (Journal of Experimental Psychology: Applied [2008]: \(392-400\) ) describes an experiment that investigated if talking on a cell phone while driving is more distracting than talking with a passenger. Drivers were randomly assigned to one of two groups. The 40 drivers in the cell phone group talked on a cell phone while driving in a simulator. The 40 drivers in the passenger group talked with a passenger in the car while driving in the simulator. The drivers were instructed to exit the highway when they came to a rest stop. Of the drivers talking to a passenger, 21 noticed the rest stop and exited. For the drivers talking on a cell phone, 11 noticed the rest stop and exited. a. Use the given information to construct and interpret a \(95 \%\) confidence interval for the difference in the proportions of drivers who would exit at the rest stop. b. Does the interval from Part (a) support the conclusion that drivers using a cell phone are more likely to miss the exit than drivers talking with a passenger? Explain how you used the confidence interval to answer this question.

The article "Fish Oil Staves Off Schizophrenia" (USA Today, February 2,2010 ) describes a study in which 81 patients ages 13 to 25 who were considered at risk for mental illness were randomly assigned to one of two groups. Those in one group took four fish oil capsules daily. Those in the other group took a placebo. After 1 year, \(5 \%\) of those in the fish oil group and \(28 \%\) of those in the placebo group had become psychotic. Is it appropriate to use the twosample \(z\) test to test hypotheses about the difference in the proportions of patients receiving the fish oil and the placebo treatments who became psychotic? Explain why or why not.

\( \quad(\mathrm{M} 1, \mathrm{M} 5, \mathrm{M} 6, \mathrm{P} 3)\) "Doctors Praise Device That Aids Ailing Hearts" (Associated Press, November 9,2004 ) is the headline of an article that describes a study of the effectiveness of a fabric device that acts like a support stocking for a weak or damaged heart. In the study, 107 people who consented to treatment were assigned at random to either a standard treatment consisting of drugs or the experimental treatment that consisted of drugs plus surgery to install the stocking. After two years, \(38 \%\) of the 57 patients receiving the stocking had improved, while \(27 \%\) of the patients receiving the standard treatment had improved. Do these data provide evidence that the proportion of patients who improve is significantly higher for the experimental treatment than for the standard treatment? Test the relevant hypotheses using a significance level of 0.05

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free