Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For each of the following hypothesis testing scenarios, indicate whether or not the appropriate hypothesis test would be for a difference in population means. If not, explain why not. Scenario 1: A researcher at the Medical College of Virginia conducted a study of 60 randomly selected male soccer players and concluded that players who frequently "head" the ball in soccer have a lower mean IQ (USA Today, August 14,1995 ). The soccer players were divided into two samples, based on whether they averaged 10 or more headers per game, and IQ was measured for each player. You would like to determine if the data support the researcher's conclusion. Scenario 2: A credit bureau analysis of undergraduate students" credit records found that the mean number of credit cards in an undergraduate's wallet was 4.09 ("Undergraduate Students and Credit Cards in \(2004,{ }^{n}\) Nellie Mae, May 2005 ). It was also reported that in a random sample of 132 undergraduates, the mean number of credit cards that the students said they carried was 2.6. You would like to determine if there is convincing evidence that the mean number of credit cards that undergraduates report carrying is less than the credit bureau's figure of \(4.09 .\) Scenario 3: Some commercial airplanes recirculate approximately \(50 \%\) of the cabin air in order to increase fuel efficiency. The authors of the paper "Aircraft Cabin Air Recirculation and Symptoms of the Common Cold" (Journal of the American Medical Association \([2002]: 483-486)\) studied 1,100 airline passengers who flew from San Francisco to Denver. Some passengers traveled on airplanes that recirculated air, and others traveled on planes that did not. Of the 517 passengers who flew on planes that did not recirculate air,

Short Answer

Expert verified
Scenario 1 requires a test for a difference in population means. Scenario 2 does not require a test for a difference in population means because it's a test comparing a sample mean to a known population mean. Scenario 3 also does not require a test for a difference in population means because it's about proportions rather than means.

Step by step solution

01

Analyzing Scenario 1

In Scenario 1, a researcher conducted a study on 60 randomly selected male soccer players divided into two groups based on whether they averaged 10 or more headers per game. IQ was measured for each player. It's clear that the hypothesis test will be for the difference in population means because there are two independent samples (players who 'head' the ball frequently vs players who don't) and the measurement is a continuous variable (IQ).
02

Analyzing Scenario 2

In Scenario 2, a credit bureau analysis of undergraduate students' credit records found that the mean number of credit cards in an undergraduate's wallet was 4.09. In a random sample of 132 undergraduates, it was also found that the mean number of credit cards that the students reported was 2.6. This is still a question about a difference in means. The question is whether the true mean number of credit cards carried by students is less than 4.09. Since it's a test comparing a sample mean to a known population mean, it's a one-sample t-test, not a test for a difference in population means.
03

Analyzing Scenario 3

In Scenario 3, the authors of a research paper studied 1,100 airline passengers who flew from San Francisco to Denver. Some passengers traveled on airplanes that recirculated air, and others traveled on planes that did not. The study is supposed to show whether passengers in one group are more likely to suffer from common cold symptoms compared to the other group. The critical information is not about the mean, but rather the proportions or percentages of passengers with cold symptoms in each group. Therefore, this scenario is likely best analyzed with a chi-squared test or a two-proportion z-test, not a test for difference in means.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Dentists make many people nervous. To see whether such nervousness elevates blood pressure, the blood pressure and pulse rates of 60 subjects were measured in a dental setting and in a medical setting ( \({ }^{4}\) The Effect of the Dental Setting on Blood Pressure Measurement," American Journal of Public Health [1983]: \(1210-1214\) ). For each subject, the difference (dental setting blood pressure minus medical setting blood pressure) was calculated. The (dental - medical) differences were also calculated for pulse rates. Summary statistics follow. $$ \begin{array}{lcc} & & \text { Standard } \\ & \begin{array}{c} \text { Mean } \\ \text { Difference } \end{array} & \begin{array}{c} \text { Deviation of } \\ \text { Differences } \end{array} \\ \text { Systolic Blood Pressure } & 4.47 & 8.77 \\ \text { Pulse (beats/min) } & -1.33 & 8.84 \end{array} $$

Research has shown that for baseball players, good hip range of motion results in improved performance and decreased body stress. The article "Functional Hip Characteristics of Baseball Pitchers and Position Players" (The American journal of Sports Medicine, \(2010: 383-388\) ) reported on a study involving independent samples of 40 professional pitchers and 40 professional position players. For the sample of pitchers, the mean hip range of motion was 75.6 degrees and the standard deviation was 5.9 degrees, whereas the mean and standard deviation for the sample of position players were 79.6 degrees and 7.6 degrees, respectively. Assuming that these two samples are representative of professional baseball pitchers and position players, estimate the difference in mean hip range of motion for pitchers and position players using a \(90 \%\) confidence interval.

Two proposed computer mouse designs were compared by recording wrist extension in degrees for 24 people who each used both mouse designs ("Comparative Study of Two Computer Mouse Designs," Cornell Human Factors Laboratory Technical Report RP7992). The difference in wrist extension was calculated by subtracting extension for mouse type \(\mathrm{B}\) from the wrist extension for mouse type \(\mathrm{A}\) for each person. The mean difference was reported to be 8.82 degrees. Assume that this sample of 24 people is representative of the population of computer users. a. Suppose that the standard deviation of the differences was 10 degrees. Is there convincing evidence that the mean wrist extension for mouse type \(A\) is greater than for mouse type \(\mathrm{B}\) ? Use a 0.05 significance level. b. Suppose that the standard deviation of the differences was 26 degrees. Is there convincing evidence that the mean wrist extension for mouse type \(A\) is greater than for mouse type \(\mathrm{B}\) ? Use a 0.05 significance level. c. Briefly explain why different conclusions were reached in the hypothesis tests of Parts (a) and (b).

Descriptions of three studies are given. In each of the studies, the two populations of interest are students majoring in science at a particular university and students majoring in liberal arts at this university. For each of these studies, indicate whether the samples are independently selected or paired. Study 1: To determine if there is evidence that the mean number of hours spent studying per week differs for the two populations, a random sample of 100 science majors and a random sample of 75 liberal arts majors are selected. Study 2: To determine if the mean amount of money spent on textbooks differs for the two populations, a random sample of science majors is selected. Each student in this sample is asked how many units he or she is enrolled in for the current semester. For each of these science majors, a liberal arts major who is taking the same number of units is identified and included in the sample of liberal arts majors. Study 3: To determine if the mean amount of time spent using the campus library differs for the two populations, a random sample of science majors is selected. A separate random sample of the same size is selected from the population of liberal arts majors.

The article "Plugged In, but Tuned Out" (USA Today, January 20,2010 ) summarizes data from two surveys of kids ages 8 to 18 . One survey was conducted in 1999 and the other was conducted in \(2009 .\) Data on the number of hours per day spent using electronic media, consistent with summary quantities given in the article, are given in the following table (the actual sample sizes for the two surveys were much larger). For purposes of this exercise, assume that the two samples are representative of kids ages 8 to 18 in each of the 2 years the surveys were conducted. Construct and interpret a \(98 \%\) confidence interval estimate of the difference between the mean number of hours per day spent using electronic media in 2009 and \(1999 .\) $$ \begin{array}{llllllllllllllll} 2009 & 5 & 9 & 5 & 8 & 7 & 6 & 7 & 9 & 7 & 9 & 6 & 9 & 10 & 9 & 8 \\ 1999 & 4 & 5 & 7 & 7 & 5 & 7 & 5 & 6 & 5 & 6 & 7 & 8 & 5 & 6 & 6 \end{array} $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free