Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Descriptions of three studies are given. In each of the studies, the two populations of interest are students majoring in science at a particular university and students majoring in liberal arts at this university. For each of these studies, indicate whether the samples are independently selected or paired. Study 1: To determine if there is evidence that the mean number of hours spent studying per week differs for the two populations, a random sample of 100 science majors and a random sample of 75 liberal arts majors are selected. Study 2: To determine if the mean amount of money spent on textbooks differs for the two populations, a random sample of science majors is selected. Each student in this sample is asked how many units he or she is enrolled in for the current semester. For each of these science majors, a liberal arts major who is taking the same number of units is identified and included in the sample of liberal arts majors. Study 3: To determine if the mean amount of time spent using the campus library differs for the two populations, a random sample of science majors is selected. A separate random sample of the same size is selected from the population of liberal arts majors.

Short Answer

Expert verified
Study 1 and Study 3 use independently selected samples, while Study 2 uses paired samples.

Step by step solution

01

Identify sampling for Study 1

In Study 1, a random sample of science majors and a random sample of liberal arts majors are independently chosen, without any specified connection or pairing between individuals in the two groups. Hence, this implies that the samples are independently selected.
02

Identify sampling for Study 2

In Study 2, a random sample of science majors is selected. Moreover, each science major is paired with a liberal arts major who is enrolled in the same number of units. This process establishes a direct relationship between each individual in the two groups, therefore, it implies that the samples are paired.
03

Identify sampling for Study 3

In Study 3, random samples of science majors and liberal arts majors are chosen, but no connection is made between individuals in the two groups. Consequently, the samples are independently selected.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The paper referenced in the Preview Example of this chapter ("Mood Food: Chocolate and Depressive Symptoms in a Cross-Sectional Analysis," Archives of Internal Medicine [2010]: \(699-703\) ) describes a study that investigated the relationship between depression and chocolate consumption. Participants in the study were 931 adults who were not currently taking medication for depression. These participants were screened for depression using a widely used screening test. The participants were then divided into two samples based on their test score. One sample consisted of people who screened positive for depression, and the other sample consisted of people who did not screen positive for depression. Each of the study participants also completed a food frequency survey. The researchers believed that the two samples were representative of the two populations of interest-adults who would screen positive for depression and adults who would not screen positive. The paper reported that the mean number of servings per month of chocolate for the sample of people that screened positive for depression was 8.39 , and the sample standard deviation was \(14.83 .\) For the sample of people who did not screen positive for depression, the mean was \(5.39,\) and the standard deviation was \(8.76 .\) The paper did not say how many individuals were in each sample, but for the purposes of this exercise, you can assume that the 931 study participants included 311 who screened positive for depression and 620 who did not screen positive. Carry out a hypothesis test to confirm the researchers' conclusion that the mean number of servings of chocolate per month for people who would screen positive for depression is higher than the mean number of chocolate servings per month for people who would not screen positive.

The paper "Sodium content of Lunchtime Fast Food Purchases at Major U.S. Chains" (Archives of Internal Medicine [2010]: \(732-734\) ) reported that for a random sample of 850 meal purchases made at Burger King, the mean sodium content was \(1,685 \mathrm{mg}\), and the standard deviation was \(828 \mathrm{mg}\). For a random sample of 2,107 meal purchases made at McDonald's, the mean sodium content was \(1,477 \mathrm{mg},\) and the standard deviation was \(812 \mathrm{mg} .\) Based on these data, is it reasonable to conclude that there is a difference in mean sodium content for meal purchases at Burger King and meal purchases at McDonald's? Use \(\alpha=0.05\).

Research has shown that, for baseball players, good hip range of motion results in improved performance and decreased body stress. The article "Functional Hip Characteristics of Baseball Pitchers and Position Players" (The American Journal of Sports Medicine, \(2010: 383-388\) ) reported on a study of independent samples of 40 professional pitchers and 40 professional position players. For the pitchers, the sample mean hip range of motion was 75.6 degrees and the sample standard deviation was 5.9 degrees, whereas the sample mean and sample standard deviation for position players were 79.6 degrees and 7.6 degrees, respectively. Assuming that the two samples are representative of professional baseball pitchers and position players, test hypotheses appropriate for determining if mean range of motion for pitchers is less than the mean for position players.

In a study of the effect of college student employment on academic performance, the following summary statistics for GPA were reported for a sample of students who worked and for a sample of students who did not work (University of Central Florida Undergraduate Research Journal, Spring 2005): $$ \begin{array}{cccc} & \begin{array}{c} \text { Sample } \\ \text { Size } \end{array} & \begin{array}{c} \text { Mean } \\ \text { GPA } \end{array} & \begin{array}{c} \text { Standard } \\ \text { Deviation } \end{array} \\ \begin{array}{c} \text { Students Who Are } \\ \text { Employed } \end{array} & 184 & 3.12 & 0.485 \\ \begin{array}{c} \text { Students Who Are } \\ \text { Not Employed } \end{array} & 114 & 3.23 & 0.524 \\ & & & \end{array} $$ The samples were selected at random from working and nonworking students at the University of Central Florida. Estimate the difference in mean GPA for students at this university who are employed and students who are not employed.

Do female college students spend more time watching TV than male college students? This was one of the questions investigated by the authors of the paper "An Ecological Momentary Assessment of the Physical Activity and Sedentary Behaviour Patterns of University Students" (Health Education Journal [2010]: \(116-125\) ). Each student in a random sample of 46 male students at a university in England and each student in a random sample of 38 female students from the same university kept a diary of how he or she spent time over a 3 -week period. For the sample of males, the mean time spent watching TV per day was 68.2 minutes, and the standard deviation was 67.5 minutes. For the sample of females, the mean time spent watching TV per day was 93.5 minutes, and the standard deviation was 89.1 minutes. Is there convincing evidence that the mean time female students at this university spend watching \(\mathrm{TV}\) is greater than the mean time for male students? Test the appropriate hypotheses using \(\alpha=0.05\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free