Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An individual can take either a scenic route to work or a nonscenic route. She decides that use of the nonscenic route can be justified only if it reduces the mean travel time by more than 10 minutes. a. If \(\mu_{1}\) refers to the mean travel time for scenic route and \(\mu_{2}\) to the mean travel time for nonscenic route, what hypotheses should be tested? b. If \(\mu_{1}\) refers to the mean travel time for nonscenic route and \(\mu_{2}\) to the mean travel time for scenic route, what hypotheses should be tested?

Short Answer

Expert verified
For \(\mu_{1}\) scenic and \(\mu_{2}\) nonscenic, the hypotheses are: \(H_{0}: \mu_{1} - \mu_{2} \leq 10\) and \(H_{1}: \mu_{1} - \mu_{2} > 10\). For \(\mu_{1}\) nonscenic and \(\mu_{2}\) scenic, the hypotheses are: \(H_{0}: \mu_{2} - \mu_{1} \leq 10\) and \(H_{1}: \mu_{2} - \mu_{1} > 10\).

Step by step solution

01

Hypotheses when \(\mu_{1}\) is for scenic and \(\mu_{2}\) for nonscenic

We want to know if the nonscenic route (\(\mu_{2}\)) saves more than 10 minutes compared to the scenic route (\(\mu_{1}\)). The null hypothesis (\(H_{0}\)) should thus represent that the time saved is less than or equal to 10 minutes, and the alternative hypothesis (\(H_{1}\)) should correspond to the time saved being more than 10 minutes. Therefore, we get: \(H_{0}: \mu_{1} - \mu_{2} \leq 10\) (Does not save time or saves up to 10 mins.) \(H_{1}: \mu_{1} - \mu_{2} > 10\) (Saves more than 10 mins.)
02

Hypotheses when \(\mu_{1}\) is for nonscenic and \(\mu_{2}\) for scenic

This time we want to know if the nonscenic route (\(\mu_{1}\)) saves more than 10 minutes compared to the scenic route (\(\mu_{2}\)). The null hypothesis (\(H_{0}\)) should thus represent that the time saved is less than or equal to 10 minutes, and the alternative hypothesis (\(H_{1}\)) should correspond to the time saved being more than 10 minutes. Therefore, we get: \(H_{0}: \mu_{2} - \mu_{1} \leq 10\) (Does not save time or saves up to 10 mins.) \(H_{1}: \mu_{2} - \mu_{1} > 10\) (Saves more than 10 mins.)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For each of the following hypothesis testing scenarios, indicate whether or not the appropriate hypothesis test would be about a difference in population means. If not, explain why not. Scenario 1: The international polling organization Ipsos reported data from a survey of 2,000 randomly selected Canadians who carry debit cards (Canadian Account Habits Survey, July 24,2006 ). Participants in this survey were asked what they considered the minimum purchase amount for which it would be acceptable to use a debit card. You would like to determine if there is convincing evidence that the mean minimum purchase amount for which Canadians consider the use of a debit card to be acceptable is less than \(\$ 10\). Scenario 2: Each person in a random sample of 247 male working adults and a random sample of 253 female working adults living in Calgary, Canada, was asked how long, in minutes, his or her typical daily commute was ("Calgary Herald Traffic Study," Ipsos, September 17,2005 ). You would like to determine if there is convincing evidence that the mean commute times differ for male workers and female workers. Scenario 3: A hotel chain is interested in evaluating reservation processes. Guests can reserve a room using either a telephone system or an online system. Independent random samples of 80 guests who reserved a room by phone and 60 guests who reserved a room online were selected. Of those who reserved by phone, 57 reported that they were satisfied with the reservation process. Of those who reserved online, 50 reported that they were satisfied. You would like to determine if it reasonable to conclude that the proportion who are satisfied is higher for those who reserve a room online.

Babies born extremely prematurely run the risk of various neurological problems and tend to have lower IQ and verbal ability scores than babies that are not premature. The article "Premature Babies May Recover Intelligence, Study Says" (San Luis Obispo Tribune, February 12,2003 ) summarized medical research that suggests that the deficits observed at an early age may decrease as children age. Children who were born prematurely were given a test of verbal ability at age 3 and again at age 8 . The test is scaled so that a score of 100 would be average for normal-birth-weight children. Data for 50 children who were born prematurely were used to generate the accompanying Minitab output, where Age 3 represents the verbal ability score at age 3 and Age8 represents the verbal ability score at age \(8 .\) Use the Minitab output to determine if there is convincing evidence that the mean verbal ability score for children born prematurely increases between age 3 and age 8 . You can assume that it is reasonable to regard the sample of 50 children as a random sample from the population of all children born prematurely. $$ \begin{aligned} &\text { Paired T-Test and Cl: Age8, Age3 }\\\ &\begin{array}{l} \text { Paired } T \text { for } \text { Age8 - Age3 } \\ \begin{array}{rrrrr} & \text { N } & \text { Mean } & \text { StDev } & \text { Se Mean } \\ \text { Age8 } & 50 & 97.21 & 16.97 & 2.40 \\ \text { Age3 } & 50 & 87.30 & 13.84 & 1.96 \\ \text { Difference } & 50 & 9.91 & 22.11 & 3.13 \\ \text { T-Test of mean difference } & =0(\mathrm{vs}>0): \text { T-Value }=3.17 \\ \text { P-Value }=0.001 & & & \end{array} \end{array} \end{aligned} $$

Each person in a random sample of 228 male teenagers and a random sample of 306 female teenagers was asked how many hours he or she spent online in a typical week (Ipsos, January 25,2006 ). The sample mean and standard deviation were 15.1 hours and 11.4 hours for the males and 14.1 hours and 11.8 hours for the females. a. The standard deviation for each of the samples is large, indicating a lot of variability in the responses to the question. Explain why it is not reasonable to think that the distribution of responses would be approximately normal for either the population of male teenagers or the population of female teenagers. b. Given your response to Part (a), would it be appropriate to use the two- sample \(t\) test to test the null hypothesis that there is no difference in the mean number of hours spent online in a typical week for male teenagers and female teenagers? Explain why or why not. c. If appropriate, carry out a test to determine if there is convincing evidence that the mean number of hours spent online in a typical week is greater for male teenagers than for female teenagers. Use \(\alpha=0.05\).

Example 13.1 looked at a study comparing students who use Facebook and students who do not use Facebook ("Facebook and Academic Performance," Computers in Human Behavior [2010]: \(1237-1245\) ). In addition to asking the students in the samples about GPA, each student was also asked how many hours he or she spent studying each day. The two samples (141 students who were Facebook users and 68 students who were not Facebook users) were independently selected from students at a large, public Midwestern university. Although the samples were not selected at random, they were selected to be representative of the two populations. For the sample of Facebook users, the mean number of hours studied per day was 1.47 hours and the standard deviation was 0.83 hours. For the sample of students who do not use Facebook, the mean was 2.76 hours and the standard deviation was 0.99 hours. Do these sample data provide convincing evidence that the mean time spent studying for Facebook users is less than the mean time spent studying for students who do not use Facebook? Use a significance level of 0.01 .

The paper "Sodium content of Lunchtime Fast Food Purchases at Major U.S. Chains" (Archives of Internal Medicine [2010]: \(732-734\) ) reported that for a random sample of 850 meal purchases made at Burger King, the mean sodium content was \(1,685 \mathrm{mg}\), and the standard deviation was \(828 \mathrm{mg}\). For a random sample of 2,107 meal purchases made at McDonald's, the mean sodium content was \(1,477 \mathrm{mg},\) and the standard deviation was \(812 \mathrm{mg} .\) Based on these data, is it reasonable to conclude that there is a difference in mean sodium content for meal purchases at Burger King and meal purchases at McDonald's? Use \(\alpha=0.05\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free