Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Research has shown that for baseball players, good hip range of motion results in improved performance and decreased body stress. The article "Functional Hip Characteristics of Baseball Pitchers and Position Players" (The American journal of Sports Medicine, \(2010: 383-388\) ) reported on a study involving independent samples of 40 professional pitchers and 40 professional position players. For the sample of pitchers, the mean hip range of motion was 75.6 degrees and the standard deviation was 5.9 degrees, whereas the mean and standard deviation for the sample of position players were 79.6 degrees and 7.6 degrees, respectively. Assuming that these two samples are representative of professional baseball pitchers and position players, estimate the difference in mean hip range of motion for pitchers and position players using a \(90 \%\) confidence interval.

Short Answer

Expert verified
To find the 90% Confidence Interval for the difference in mean hip range of motion between professional baseball pitchers and position players, one should follow the above steps, using the given parameters. After calculating the standard error in Step 3, this should be plugged into the CI formula in Step 4, together with the other values.

Step by step solution

01

Gather the data

Firstly, gather and organize all the data provided. Here, for pitchers, we have: \n\nSample size (n1) = 40\nMean (x1) = 75.6 degrees\nStandard deviation (s1) = 5.9 degrees\n\nAnd for the position players, we have:\n\nSample size (n2) = 40\nMean (x2) = 79.6 degrees\nStandard deviation (s2) = 7.6 degrees
02

Decide the level of Confidence

Here, the level of confidence required is 90%. Therefore, \(\alpha = 1 - 0.90 = 0.10\). Since this is a two-tailed test, \(\alpha / 2 = 0.10 / 2 = 0.05\). From the table of Standard Normal (Z) Distribution, we can find that the critical value (z) for 0.05 in the upper tail is 1.645.
03

Calculate the standard error of the difference

The standard error (SE) of the difference in sample means is computed using the following formula: \n\nSE = \(\sqrt{\frac{(s1)^2}{n1} + \frac{(s2)^2}{n2}}\)\n\nSubstitute \(s1 = 5.9, n1 = 40, s2 = 7.6, n2 = 40\) into the formula to get the SE.
04

Calculate the Confidence Interval

The 90% confidence interval for the difference in population means is calculated as follows:\n\nCI = \((x1 - x2) \pm (z * SE)\)\n\nWhere \(x1 = 75.6\), \(x2 = 79.6\), and \(z = 1.645\) (from Step 2). The SE calculated in Step 3 will be used here. Plug in these values to find the 90% Confidence Interval.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Descriptions of three studies are given. In each of the studies, the two populations of interest are students majoring in science at a particular university and students majoring in liberal arts at this university. For each of these studies, indicate whether the samples are independently selected or paired. Study 1: To determine if there is evidence that the mean number of hours spent studying per week differs for the two populations, a random sample of 100 science majors and a random sample of 75 liberal arts majors are selected. Study 2: To determine if the mean amount of money spent on textbooks differs for the two populations, a random sample of science majors is selected. Each student in this sample is asked how many units he or she is enrolled in for the current semester. For each of these science majors, a liberal arts major who is taking the same number of units is identified and included in the sample of liberal arts majors. Study 3: To determine if the mean amount of time spent using the campus library differs for the two populations, a random sample of science majors is selected. A separate random sample of the same size is selected from the population of liberal arts majors.

Wayne Gretzky was one of ice hockey's most prolific scorers when he played for the Edmonton Oilers. During his last season with the Oilers, Gretzky played in 41 games and missed 17 games due to injury. The article "The Great Gretzky" (Chance [1991]: 16-21) looked at the number of goals scored by the Oilers in games with and without Gretzky, as shown in the accompanying table. If you view the 41 games with Gretzky as a random sample of all Oiler games in which Gretzky played and the 17 games without Gretzky as a random sample of all Oiler games in which Gretzky did not play, is there convincing evidence that the mean number of goals scored by the Oilers is higher for games when Gretzky plays? Use \(\alpha=0.01\). $$ \begin{array}{lccc} & & \text { Sample } & \text { Sample } \\ & n & \text { Mean } & \text { sd } \\ \text { Games with Gretzky } & 41 & 4.73 & 1.29 \\ \text { Games without Gretzky } & 17 & 3.88 & 1.18 \end{array} $$

Do girls think they don't need to take as many science classes as boys? The article "Intentions of Young Students to Enroll in Science Courses in the Future: An Examination of Gender Differences" (Science Education [1999]: \(55-76\) ) describes a survey of randomly selected children in grades \(4,5,\) and 6 . The 224 girls participating in the survey each indicated the number of science courses they intended to take in the future, and they also indicated the number of science courses they thought boys their age should take in the future. For each girl, the authors calculated the difference between the number of science classes she intends to take and the number she thinks boys should take. a. Explain why these data are paired. b. The mean of the differences was -0.83 (indicating girls intended, on average, to take fewer science classes than they thought boys should take), and the standard deviation was 1.51 . Construct and interpret a \(95 \%\) confidence interval for the mean difference.

The press release titled "Keeping Score When It Counts: Graduation Rates and Academic Progress Rates" (The Institute for Diversity and Ethics in Sport, March 16,2009 ) gave the 2009 graduation rates for African American basketball players and for white basketball players at every NCAA Division I university with a basketball program. Explain why it is not necessary to use a paired- samples \(t\) test to determine if the 2009 mean graduation rate for African American basketball players differs from the 2009 mean graduation rate for white basketball players for NCAA Division I schools.

Dentists make many people nervous. To see whether such nervousness elevates blood pressure, the blood pressure and pulse rates of 60 subjects were measured in a dental setting and in a medical setting ( \({ }^{4}\) The Effect of the Dental Setting on Blood Pressure Measurement," American Journal of Public Health [1983]: \(1210-1214\) ). For each subject, the difference (dental setting blood pressure minus medical setting blood pressure) was calculated. The (dental - medical) differences were also calculated for pulse rates. Summary statistics follow. $$ \begin{array}{lcc} & & \text { Standard } \\ & \begin{array}{c} \text { Mean } \\ \text { Difference } \end{array} & \begin{array}{c} \text { Deviation of } \\ \text { Differences } \end{array} \\ \text { Systolic Blood Pressure } & 4.47 & 8.77 \\ \text { Pulse (beats/min) } & -1.33 & 8.84 \end{array} $$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free