Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Some people believe that talking on a cell phone while driving slows reaction time, increasing the risk of accidents. The study described in the paper "A Comparison of the Cell Phone Driver and the Drunk Driver" (Human Factors [2006]: \(381-391\) ) investigated the braking reaction time of people driving in a driving simulator. Drivers followed a pace car in the simulator, and when the pace car's brake lights came on, the drivers were supposed to step on the brake. The time between the pace car brake lights coming on and the driver stepping on the brake was measured. Two samples of 40 drivers participated in the study. The 40 people in one sample used a cell phone while driving. The 40 people in the second sample drank a mixture of orange juice and alcohol in an amount calculated to achieve a blood alcohol level of \(0.08 \%\) (a value considered legally drunk in most states). For the cell phone sample, the mean braking reaction time was 779 milliseconds and the standard deviation was 209 milliseconds. For the alcohol sample, the mean breaking reaction time was 849 milliseconds and the standard deviation was \(228 .\) Is there convincing evidence that the mean braking reaction time is different for the population of drivers talking on a cell phone and the population of drivers who have a blood alcohol level of \(0.08 \%\) ? For purposes of this exercise, you can assume that the two samples are representative of the two populations of interest.

Short Answer

Expert verified
Whether there's convincing evidence that the mean braking reaction time is different for the population of drivers talking on a cell phone and the population of drivers who have a blood alcohol level of 0.08% depends on the comparison of calculated t-statistic with the critical t-value from the t-distribution table. If the computed t-statistic is in the critical region, we reject the null hypothesis indicating there's enough evidence to suggest a difference in mean reaction times.

Step by step solution

01

Set up the hypotheses

The null hypothesis (\(H_0\)) states that the mean braking reaction time is the same for all drivers, regardless of whether they are talking on a cell phone or have a blood alcohol level of 0.08%. Mathematically, this can be represented as: \(H_0: \mu_1 = \mu_2\)The alternative hypothesis (\(H_1\)) states that the mean braking time varies between the two groups. This can be represented as: \(H_1: \mu_1 \neq \mu_2\) where \(\mu_1\) and \(\mu_2\) are the mean braking times for the cell phone group and alcohol group respectively.
02

Calculate the test statistic

The test statistic for this two-sample t-test can be calculated using the formula: \[t = \frac{\(\bar X_1 - \bar X_2\)}{sqrt{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}\]where \(\bar X_1\) and \(\bar X_2\) are the sample means, \(s_1\) and \(s_2\) are the sample standard deviations, and \(n_1\) and \(n_2\) are the sample sizes. Substituting the given values and performing the necessary calculations, we get the value of the test statistic.
03

Determine Degrees of Freedom and Find the Critical Value

Degrees of freedom for this two-sample t-test are calculated using the formula: \(df = n_1 + n_2 - 2 = 40 + 40 - 2 = 78\). As we are conducting a two-tailed test (as the alternative hypothesis is interested in difference, not a specific direction), we need to find the critical t-value that corresponds to an alpha level of 0.05 split between two tails (0.025 in each tail) on a t-distribution with 78 degrees of freedom.
04

Make a decision

Assuming we use a significance level of 5% (or \(\alpha = 0.05\)), If our calculated test statistic is greater than the critical t-value or less than the negative of the critical value, we reject the null hypothesis. If it is less than the critical t-value and greater than the negative of the critical value, we fail to reject the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Wayne Gretzky was one of ice hockey's most prolific scorers when he played for the Edmonton Oilers. During his last season with the Oilers, Gretzky played in 41 games and missed 17 games due to injury. The article "The Great Gretzky" (Chance [1991]: 16-21) looked at the number of goals scored by the Oilers in games with and without Gretzky, as shown in the accompanying table. If you view the 41 games with Gretzky as a random sample of all Oiler games in which Gretzky played and the 17 games without Gretzky as a random sample of all Oiler games in which Gretzky did not play, is there convincing evidence that the mean number of goals scored by the Oilers is higher for games when Gretzky plays? Use \(\alpha=0.01\). $$ \begin{array}{lccc} & & \text { Sample } & \text { Sample } \\ & n & \text { Mean } & \text { sd } \\ \text { Games with Gretzky } & 41 & 4.73 & 1.29 \\ \text { Games without Gretzky } & 17 & 3.88 & 1.18 \end{array} $$

Babies born extremely prematurely run the risk of various neurological problems and tend to have lower IQ and verbal ability scores than babies who are not premature. The article "Premature Babies May Recover Intelligence, Study Says" (San Luis Obispo Tribune, February 12,2003 ) summarized medical research that suggests that the deficit observed at an early age may decrease as children age. Children who were born prematurely were given a test of verbal ability at age 3 and again at age 8 . The test is scaled so that a score of 100 would be average for normal-birth-weight children. Data that are consistent with summary quantities given in the paper for 50 children who were born prematurely were used to generate the accompanying Minitab output, where Age 3 represents the verbal ability score at age 3 and Age8 represents the verbal ability score at age \(8 .\) Use the information in the Minitab output to construct and interpret a \(95 \%\) confidence interval for the change in mean verbal ability score from age 3 to age 8 . You can assume that it is reasonable to regard the sample of 50 children as a random sample from the population of all children born prematurely. Paired T-Test and Cl: Age8, Age3 Paired \(\mathrm{T}\) for Age8 - Age3 \(\begin{array}{lrrrr} & \mathrm{N} & \text { Mean } & \text { StDev } & \text { Se Mean } \\ \text { Age8 } & 50 & 97.21 & 16.97 & 2.40 \\ \text { Age3 } & 50 & 87.30 & 13.84 & 1.96 \\ \text { Difference } & 50 & 9.91 & 22.11 & 3.13\end{array}\)

For each of the following hypothesis testing scenarios, indicate whether or not the appropriate hypothesis test would be for a difference in population means. If not, explain why not. Scenario 1: The authors of the paper "Adolescents and MP3 Players: Too Many Risks, Too Few Precautions" (Pediatrics [2009]: e953-e958) studied independent random samples of 764 Dutch boys and 748 Dutch girls ages 12 to \(19 .\) Of the boys, 397 reported that they almost always listen to music at a high volume setting. Of the girls, 331 reported listening to music at a high volume setting. You would like to determine if there is convincing evidence that the proportion of Dutch boys who listen to music at high volume is greater than this proportion for Dutch girls. Scenario 2: The report "Highest Paying Jobs for \(2009-10\) Bachelor's Degree Graduates" (National Association of Colleges and Employers, February 2010 ) states that the mean yearly salary offer for students graduating with accounting degrees in 2010 is \(\$ 48,722\). A random sample of 50 accounting graduates at a large university resulted in a mean offer of \(\$ 49,850\) and a standard deviation of \(\$ 3,300\). You would like to determine if there is strong support for the claim that the mean salary offer for accounting graduates of this university is higher than the 2010 national average of \(\$ 48,722\). Scenario 3: Each person in a random sample of 228 male teenagers and a random sample of 306 female teenagers was asked how many hours he or she spent online in a typical week (Ipsos, January 25,2006 ). The sample mean and standard deviation were 15.1 hours and 11.4 hours for males and 14.1 and 11.8 for females. You would like to determine if there is convincing evidence that the mean number of hours spent online in a typical week is greater for male teenagers than for female teenagers.

The press release titled "Keeping Score When It Counts: Graduation Rates and Academic Progress Rates" (The Institute for Diversity and Ethics in Sport, March 16,2009 ) gave the 2009 graduation rates for African American basketball players and for white basketball players at every NCAA Division I university with a basketball program. Explain why it is not necessary to use a paired- samples \(t\) test to determine if the 2009 mean graduation rate for African American basketball players differs from the 2009 mean graduation rate for white basketball players for NCAA Division I schools.

Research has shown that, for baseball players, good hip range of motion results in improved performance and decreased body stress. The article "Functional Hip Characteristics of Baseball Pitchers and Position Players" (The American Journal of Sports Medicine, \(2010: 383-388\) ) reported on a study of independent samples of 40 professional pitchers and 40 professional position players. For the pitchers, the sample mean hip range of motion was 75.6 degrees and the sample standard deviation was 5.9 degrees, whereas the sample mean and sample standard deviation for position players were 79.6 degrees and 7.6 degrees, respectively. Assuming that the two samples are representative of professional baseball pitchers and position players, test hypotheses appropriate for determining if mean range of motion for pitchers is less than the mean for position players.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free