Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Do girls think they don't need to take as many science classes as boys? The article "Intentions of Young Students to Enroll in Science Courses in the Future: An Examination of Gender Differences" (Science Education [1999]: \(55-76\) ) describes a survey of randomly selected children in grades \(4,5,\) and 6 . The 224 girls participating in the survey each indicated the number of science courses they intended to take in the future, and they also indicated the number of science courses they thought boys their age should take in the future. For each girl, the authors calculated the difference between the number of science classes she intends to take and the number she thinks boys should take. a. Explain why these data are paired. b. The mean of the differences was -0.83 (indicating girls intended, on average, to take fewer science classes than they thought boys should take), and the standard deviation was 1.51 . Construct and interpret a \(95 \%\) confidence interval for the mean difference.

Short Answer

Expert verified
a. The data are paired because each girl provided both the number of science classes she intends to take and the number she thinks boys should take. These two pieces of data are paired for each individual girl. \n b. The 95% confidence interval is calculated to be (-0.83 - 1.96*(1.51/224^0.5), -0.83 + 1.96*(1.51/224^0.5)). This shows that with 95% confidence, the true average difference between the number of science classes girls intend to take and the number they think boys should take is within this interval. The interval is negative, indicating that on average, girls intended to take fewer science classes than they thought boys should take.

Step by step solution

01

Identify Paired Data

In the given data, for each girl, we have two pieces of information: the number of science classes she intends to take and the number she thinks boys her age should take. This means that for each girl, we have a pair of associated data points. Hence, these data are paired.
02

Calculate the Confidence Interval

The 95% confidence interval can be calculated using the formula: \[ \text{Confidence Interval} = \text{Mean} ± \text{Z-score} * \frac{\text{Standard Deviation}}{\sqrt{\text{Sample size}}} \] Here, the Z-score for a 95% confidence interval is 1.96, the mean of the differences is -0.83, and the standard deviation is 1.51. The sample size is 224 (the number of girls). So the confidence interval is: \[ -0.83 ± 1.96 * \frac{1.51}{\sqrt{224}} \]
03

Interpret the Confidence Interval

The confidence interval calculated in the previous step gives us a range of values. If the confidence interval contains zero, then the mean difference is not statistically significant. If it does not contain zero, then the difference is statistically significant. In this case, since the interval is negative, it indicates that on average, girls intended to take fewer science classes than they thought boys should take.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a study of malpractice claims where a settlement had been reached, two random samples were selected: a random sample of 515 closed malpractice claims that were found not to involve medical errors and a random sample of 889 claims that were found to involve errors (New England Journal of Medicine [2006]: \(2024-2033\) ). The following statement appeared in the paper: "When claims not involving errors were compensated, payments were significantly lower on average than were payments for claims involving errors \((\$ 313,205\) vs. \(\$ 521,560, P=0.004)\) a. What hypotheses did the researchers test to reach the stated conclusion? b. Which of the following could have been the value of the test statistic for the hypothesis test? Explain your reasoning. i. \(\quad t=5.00\) iii. \(t=2.33\) ii. \(t=2.65\) iv. \(t=1.47\)

In a study of the effect of college student employment on academic performance, the following summary statistics for GPA were reported for a sample of students who worked and for a sample of students who did not work (University of Central Florida Undergraduate Research Journal, Spring 2005): $$ \begin{array}{cccc} & \begin{array}{c} \text { Sample } \\ \text { Size } \end{array} & \begin{array}{c} \text { Mean } \\ \text { GPA } \end{array} & \begin{array}{c} \text { Standard } \\ \text { Deviation } \end{array} \\ \begin{array}{c} \text { Students Who Are } \\ \text { Employed } \end{array} & 184 & 3.12 & 0.485 \\ \begin{array}{c} \text { Students Who Are } \\ \text { Not Employed } \end{array} & 114 & 3.23 & 0.524 \\ & & & \end{array} $$ The samples were selected at random from working and nonworking students at the University of Central Florida. Estimate the difference in mean GPA for students at this university who are employed and students who are not employed.

Wayne Gretzky was one of ice hockey's most prolific scorers when he played for the Edmonton Oilers. During his last season with the Oilers, Gretzky played in 41 games and missed 17 games due to injury. The article "The Great Gretzky" (Chance [1991]: 16-21) looked at the number of goals scored by the Oilers in games with and without Gretzky, as shown in the accompanying table. If you view the 41 games with Gretzky as a random sample of all Oiler games in which Gretzky played and the 17 games without Gretzky as a random sample of all Oiler games in which Gretzky did not play, is there convincing evidence that the mean number of goals scored by the Oilers is higher for games when Gretzky plays? Use \(\alpha=0.01\). $$ \begin{array}{lccc} & & \text { Sample } & \text { Sample } \\ & n & \text { Mean } & \text { sd } \\ \text { Games with Gretzky } & 41 & 4.73 & 1.29 \\ \text { Games without Gretzky } & 17 & 3.88 & 1.18 \end{array} $$

Descriptions of four studies are given. In each of the studies, the two populations of interest are the students at a particular university who live on campus and the students who live off campus. Which of these studies have samples that are independently selected? Study 1: To determine if there is evidence that the mean amount of money spent on food each month differs for the two populations, a random sample of 45 students who live on campus and a random sample of 50 students who live off campus are selected. Study 2: To determine if the mean number of hours spent studying differs for the two populations, a random sample students who live on campus is selected. Each student in this sample is asked how many hours he or she spend working each week. For each of these students who live on campus, a student who lives off campus and who works the same number of hours per week is identified and included in the sample of students who live off campus. Study 3: To determine if the mean number of hours worked per week differs for the two populations, a random sample of students who live on campus and who have a brother or sister who also attends the university but who lives off campus is selected. The sibling who lives on campus is included in the on campus sample, and the sibling who lives off campus is included in the off- campus sample. Study 4: To determine if the mean amount spent on textbooks differs for the two populations, a random sample of students who live on campus is selected. A separate random sample of the same size is selected from the population of students who live off campus.

Each person in a random sample of 228 male teenagers and a random sample of 306 female teenagers was asked how many hours he or she spent online in a typical week (Ipsos, January 25,2006 ). The sample mean and standard deviation were 15.1 hours and 11.4 hours for the males and 14.1 hours and 11.8 hours for the females. a. The standard deviation for each of the samples is large, indicating a lot of variability in the responses to the question. Explain why it is not reasonable to think that the distribution of responses would be approximately normal for either the population of male teenagers or the population of female teenagers. b. Given your response to Part (a), would it be appropriate to use the two- sample \(t\) test to test the null hypothesis that there is no difference in the mean number of hours spent online in a typical week for male teenagers and female teenagers? Explain why or why not. c. If appropriate, carry out a test to determine if there is convincing evidence that the mean number of hours spent online in a typical week is greater for male teenagers than for female teenagers. Use \(\alpha=0.05\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free