Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The article "Plugged In, but Tuned Out" (USA Today, January 20,2010 ) summarizes data from two surveys of kids ages 8 to 18 . One survey was conducted in 1999 and the other was conducted in \(2009 .\) Data on the number of hours per day spent using electronic media, consistent with summary quantities given in the article, are given in the following table (the actual sample sizes for the two surveys were much larger). For purposes of this exercise, assume that the two samples are representative of kids ages 8 to 18 in each of the 2 years the surveys were conducted. Construct and interpret a \(98 \%\) confidence interval estimate of the difference between the mean number of hours per day spent using electronic media in 2009 and \(1999 .\) $$ \begin{array}{llllllllllllllll} 2009 & 5 & 9 & 5 & 8 & 7 & 6 & 7 & 9 & 7 & 9 & 6 & 9 & 10 & 9 & 8 \\ 1999 & 4 & 5 & 7 & 7 & 5 & 7 & 5 & 6 & 5 & 6 & 7 & 8 & 5 & 6 & 6 \end{array} $$

Short Answer

Expert verified
The 98% confidence interval estimate of the difference between the mean number of hours per day spent using electronic media in 2009 and 1999 can be obtained as \(\bar{x1} - \bar{x2} \pm Z*\sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}\) after calculating the necessary statistics.

Step by step solution

01

Calculate Means

First, find the means of the samples: For 2009, the sample mean (\(\bar{x1}\)) can be calculated as \(\frac{5+9+5+8+7+6+7+9+7+9+6+9+10+9+8}{15} = 7.60.\)For 1999, the sample mean (\(\bar{x2}\)) can be calculated as \(\frac{4+5+7+7+5+7+5+6+5+6+7+8+5+6+6}{15} = 6.07.\)
02

Calculate Standard Deviations

Next, calculate the sample standard deviations:For 2009, calculate the standard deviation \(s1\) by finding the square root of the average of the squared deviations from the mean.For 1999, calculate the standard deviation \(s2\) similarly.
03

Find the Z-Value

The Z-value corresponds to the desired level of confidence. A 98% confidence level corresponds to a Z-value of 2.33 (found in Z-tables).
04

Calculate the Confidence Interval

Finally, calculate the confidence interval using the formula:\(\bar{x1} - \bar{x2} \pm Z*\sqrt{\frac{s1^2}{n1} + \frac{s2^2}{n2}}\)With \(n1\) and \(n2\) being the sample sizes (15 for each year). Calculate the standard errors \(\frac{s1^2}{n1}\) and \(\frac{s2^2}{n2}\) and their sum, get the square root of this sum and multiply it with the Z-value. Then add and subtract this term from the difference of the means (\(\bar{x1} - \bar{x2}\)). This will give the lower and upper bounds of the 98% confidence interval.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Each person in a random sample of 228 male teenagers and a random sample of 306 female teenagers was asked how many hours he or she spent online in a typical week (Ipsos, January 25,2006 ). The sample mean and standard deviation were 15.1 hours and 11.4 hours for the males and 14.1 hours and 11.8 hours for the females. a. The standard deviation for each of the samples is large, indicating a lot of variability in the responses to the question. Explain why it is not reasonable to think that the distribution of responses would be approximately normal for either the population of male teenagers or the population of female teenagers. b. Given your response to Part (a), would it be appropriate to use the two- sample \(t\) test to test the null hypothesis that there is no difference in the mean number of hours spent online in a typical week for male teenagers and female teenagers? Explain why or why not. c. If appropriate, carry out a test to determine if there is convincing evidence that the mean number of hours spent online in a typical week is greater for male teenagers than for female teenagers. Use \(\alpha=0.05\).

The press release titled "Keeping Score When It Counts: Graduation Rates and Academic Progress Rates" (The Institute for Diversity and Ethics in Sport, March 16,2009 ) gave the 2009 graduation rates for African American basketball players and for white basketball players at every NCAA Division I university with a basketball program. Explain why it is not necessary to use a paired- samples \(t\) test to determine if the 2009 mean graduation rate for African American basketball players differs from the 2009 mean graduation rate for white basketball players for NCAA Division I schools.

The authors of the paper "Ultrasound Techniques Applied to Body Fat Measurement in Male and Female Athletes" (Journal of Athletic Training [2009]: \(142-147\) ) compared two different methods for measuring body fat percentage. One method uses ultrasound and the other method uses X-ray technology. The accompanying table gives body fat percentages for 16 athletes using each of these methods (a subset of the data given in a graph that appeared in the paper). For purposes of this exercise, you can assume that the 16 athletes who participated in this study are representative of the population of athletes. Do these data provide convincing evidence that the mean body fat percentage measurement differs for the two methods? Test the appropriate hypotheses using \(\alpha=0.05\). $$ \begin{array}{crr} \text { Athlete } & \text { X-ray } & \text { Ultrasound } \\ \hline 1 & 5.00 & 4.75 \\ 2 & 7.00 & 3.75 \\ 3 & 9.25 & 9.00 \\ 4 & 12.00 & 11.75 \\ 5 & 17.25 & 17.00 \\ 6 & 29.50 & 27.50 \\ 7 & 5.50 & 6.50 \\ 8 & 6.00 & 6.75 \\ 9 & 8.00 & 8.75 \\ 10 & 8.50 & 9.50 \\ 11 & 9.25 & 9.50 \\ 12 & 11.00 & 12.00 \\ 13 & 12.00 & 12.25 \\ 14 & 14.00 & 15.50 \\ 15 & 17.00 & 18.00 \\ 16 & 18.00 & 18.25 \end{array} $$

Do children diagnosed with attention deficit/ hyperactivity disorder (ADHD) have smaller brains than children without this condition? This question was the topic of a research study described in the paper "Developmental Trajectories of Brain Volume Abnormalities in Children and Adolescents with Attention Deficit/Hyperactivity Disorder" (journal of the American Medical Association [2002]: \(1740-\) 1747). Brain scans were completed for a representative sample of 152 children with ADHD and a representative sample of 139 children without ADHD. Summary values for total cerebral volume (in milliliters) are given in the following table: $$ \begin{array}{lccc} & n & \bar{x} & s \\ \hline \text { Children with ADHD } & 152 & 1,059.4 & 117.5 \\ \text { Children Without ADHD } & 139 & 1,104.5 & 111.3 \end{array} $$ Use a \(95 \%\) confidence interval to estimate the differ- ence in mean brain volume for children with and without ADHD.

The paper referenced in the Preview Example of this chapter ("Mood Food: Chocolate and Depressive Symptoms in a Cross-Sectional Analysis," Archives of Internal Medicine [2010]: \(699-703\) ) describes a study that investigated the relationship between depression and chocolate consumption. Participants in the study were 931 adults who were not currently taking medication for depression. These participants were screened for depression using a widely used screening test. The participants were then divided into two samples based on their test score. One sample consisted of people who screened positive for depression, and the other sample consisted of people who did not screen positive for depression. Each of the study participants also completed a food frequency survey. The researchers believed that the two samples were representative of the two populations of interest-adults who would screen positive for depression and adults who would not screen positive. The paper reported that the mean number of servings per month of chocolate for the sample of people that screened positive for depression was 8.39 , and the sample standard deviation was \(14.83 .\) For the sample of people who did not screen positive for depression, the mean was \(5.39,\) and the standard deviation was \(8.76 .\) The paper did not say how many individuals were in each sample, but for the purposes of this exercise, you can assume that the 931 study participants included 311 who screened positive for depression and 620 who did not screen positive. Carry out a hypothesis test to confirm the researchers' conclusion that the mean number of servings of chocolate per month for people who would screen positive for depression is higher than the mean number of chocolate servings per month for people who would not screen positive.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free