Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The press release titled "Keeping Score When It Counts: Graduation Rates and Academic Progress Rates" (The Institute for Diversity and Ethics in Sport, March 16,2009 ) gave the 2009 graduation rates for African American basketball players and for white basketball players at every NCAA Division I university with a basketball program. Explain why it is not necessary to use a paired- samples \(t\) test to determine if the 2009 mean graduation rate for African American basketball players differs from the 2009 mean graduation rate for white basketball players for NCAA Division I schools.

Short Answer

Expert verified
A paired-samples t-test is not suitable here because we're comparing two independent, unrelated groups (African American basketball players and white basketball players), not the same group under two different conditions. An independent t-test, which is designed for comparing two separate groups of independent units, would be a more appropriate choice for this scenario.

Step by step solution

01

Understanding the Paired-samples t-test

A paired-samples t-test is used to compare the means of two related groups to understand if there's a significant difference between them. The test is mainly used when the participants are subjected to two conditions and the response is to be gauged for the same group under both the conditions. The 'pairing part' comes into play because every subject experiences both conditions, and the effect of those conditions is what is compared in the end. However, in our case, the individuals in each group are distinct; African American basketball players and white basketball players are not the same individuals being compared under different conditions.
02

Explaining the Actual Case Requirement

In this exercise's case, we are comparing two independent groups: African American basketball players and white basketball players. These two groups didn't undergo a common condition where their responses need to be compared. Instead, we are interested in comparing the graduation rates between these two unrelated (independent) groups. Therefore, this scenario would more appropriately be suited to an independent samples t-test rather than a paired samples t-test.
03

Summarising the Difference in Appropriate Tests

The independent t-test is used when two separate groups of independent variables are compared, allowing the comparison of the mean graduation rate between African American basketball players and white basketball players from NCAA Division I schools. The paired t-test, on the other hand, is designed for dependent or related groups, which is not the case in our scenario. Thus, usage of a paired-samples t-test is not justifiable here, since our groups are independent.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Descriptions of three studies are given. In each of the studies, the two populations of interest are students majoring in science at a particular university and students majoring in liberal arts at this university. For each of these studies, indicate whether the samples are independently selected or paired. Study 1: To determine if there is evidence that the mean number of hours spent studying per week differs for the two populations, a random sample of 100 science majors and a random sample of 75 liberal arts majors are selected. Study 2: To determine if the mean amount of money spent on textbooks differs for the two populations, a random sample of science majors is selected. Each student in this sample is asked how many units he or she is enrolled in for the current semester. For each of these science majors, a liberal arts major who is taking the same number of units is identified and included in the sample of liberal arts majors. Study 3: To determine if the mean amount of time spent using the campus library differs for the two populations, a random sample of science majors is selected. A separate random sample of the same size is selected from the population of liberal arts majors.

Example 13.1 looked at a study comparing students who use Facebook and students who do not use Facebook ("Facebook and Academic Performance," Computers in Human Behavior [2010]: \(1237-1245\) ). In addition to asking the students in the samples about GPA, each student was also asked how many hours he or she spent studying each day. The two samples (141 students who were Facebook users and 68 students who were not Facebook users) were independently selected from students at a large, public Midwestern university. Although the samples were not selected at random, they were selected to be representative of the two populations. For the sample of Facebook users, the mean number of hours studied per day was 1.47 hours and the standard deviation was 0.83 hours. For the sample of students who do not use Facebook, the mean was 2.76 hours and the standard deviation was 0.99 hours. Do these sample data provide convincing evidence that the mean time spent studying for Facebook users is less than the mean time spent studying for students who do not use Facebook? Use a significance level of 0.01 .

Two proposed computer mouse designs were compared by recording wrist extension in degrees for 24 people who each used both mouse designs ("Comparative Study of Two Computer Mouse Designs," Cornell Human Factors Laboratory Technical Report RP7992). The difference in wrist extension was calculated by subtracting extension for mouse type \(\mathrm{B}\) from the wrist extension for mouse type \(\mathrm{A}\) for each person. The mean difference was reported to be 8.82 degrees. Assume that this sample of 24 people is representative of the population of computer users. a. Suppose that the standard deviation of the differences was 10 degrees. Is there convincing evidence that the mean wrist extension for mouse type \(A\) is greater than for mouse type \(\mathrm{B}\) ? Use a 0.05 significance level. b. Suppose that the standard deviation of the differences was 26 degrees. Is there convincing evidence that the mean wrist extension for mouse type \(A\) is greater than for mouse type \(\mathrm{B}\) ? Use a 0.05 significance level. c. Briefly explain why different conclusions were reached in the hypothesis tests of Parts (a) and (b).

In the study described in the paper "Exposure to Diesel Exhaust Induces Changes in EEG in Human Volunteers" (Particle and Fibre Toxicology [2007]), 10 healthy men were exposed to diesel exhaust for 1 hour. A measure of brain activity (called median power frequency, or MPF) was recorded at two different locations in the brain both before and after the diesel exhaust exposure. The resulting data are given in the accompanying table. For purposes of this exercise, assume that it is reasonable to regard the sample of 10 men as representative of healthy adult males. $$ \begin{array}{ccccc} &{\mathrm{MPF}(\operatorname{In} \mathrm{Hz})} \\ { 2 - 5 } \text { Subject } & \begin{array}{c} \text { Location 1 } \\ \text { Before } \end{array} & \begin{array}{c} \text { Location 1 } \\ \text { After } \end{array} & \begin{array}{c} \text { Location 2 } \\ \text { Before } \end{array} & \begin{array}{c} \text { Location 2 } \\ \text { After } \end{array} \\ \hline 1 & 6.4 & 8.0 & 6.9 & 9.4 \\ 2 & 8.7 & 12.6 & 9.5 & 11.2 \\ 3 & 7.4 & 8.4 & 6.7 & 10.2 \\ 4 & 8.7 & 9.0 & 9.0 & 9.6 \\ 5 & 9.8 & 8.4 & 9.7 & 9.2 \\ 6 & 8.9 & 11.0 & 9.0 & 11.9 \\ 7 & 9.3 & 14.4 & 7.9 & 9.1 \\ 8 & 7.4 & 11.3 & 8.3 & 9.3 \\ 9 & 6.6 & 7.1 & 7.2 & 8.0 \\ 10 & 8.9 & 11.2 & 7.4 & 9.1 \end{array} $$ Do the data provide convincing evidence that the mean MPF at brain location 1 is higher after diesel exposure than before diesel exposure? Test the relevant hypotheses using a significance level of 0.05 .

Do male college students spend more time studying than female college students? This was one of the questions investigated by the authors of the paper "An Ecological Momentary Assessment of the Physical Activity and Sedentary Behaviour Patterns of University Students" (Heath Education Journal \([2010]: 116-125)\). Each student in a random sample of 46 male students at a university in England and each student in a random sample of 38 female students from the same university kept a diary of how he or she spent time over a 3 -week period. For the sample of males, the mean time spent studying per day was 280.0 minutes, and the standard deviation was 160.4 minutes. For the sample of females, the mean time spent studying per day was 184.8 minutes, and the standard deviation was 166.4 minutes. Is there convincing evidence that the mean time male students at this university spend studying is greater than the mean time for female students? Test the appropriate hypotheses using \(\alpha=0.05\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free