Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two proposed computer mouse designs were compared by recording wrist extension in degrees for 24 people who each used both mouse designs ("Comparative Study of Two Computer Mouse Designs," Cornell Human Factors Laboratory Technical Report RP7992). The difference in wrist extension was calculated by subtracting extension for mouse type \(\mathrm{B}\) from the wrist extension for mouse type \(\mathrm{A}\) for each person. The mean difference was reported to be 8.82 degrees. Assume that this sample of 24 people is representative of the population of computer users. a. Suppose that the standard deviation of the differences was 10 degrees. Is there convincing evidence that the mean wrist extension for mouse type \(A\) is greater than for mouse type \(\mathrm{B}\) ? Use a 0.05 significance level. b. Suppose that the standard deviation of the differences was 26 degrees. Is there convincing evidence that the mean wrist extension for mouse type \(A\) is greater than for mouse type \(\mathrm{B}\) ? Use a 0.05 significance level. c. Briefly explain why different conclusions were reached in the hypothesis tests of Parts (a) and (b).

Short Answer

Expert verified
a. The null hypothesis is rejected and there is evidence to support that the mean wrist extension for mouse type A is greater than mouse type B (Standard deviation = 10 degrees). b. The null hypothesis is not rejected and there is not enough evidence to support that mean wrist extension for mouse type A is greater than mouse type B (Standard deviation = 26 degrees). c. The conclusions are different due to the change in standard deviation which affects the variability in data, influencing the test results.

Step by step solution

01

Identify the null and alternative hypotheses

For this exercise, the null hypothesis \(H_0\) would state that there is no difference in the mean wrist extension for mouse type A and B. This can mathematically be expressed as \( \mu_{A} - \mu_{B} = 0 \). The alternative hypothesis \(H_1\) would state that the mean extension for mouse type A is greater than mouse type B. This can mathematically be expressed as \( \mu_{A} - \mu_{B} > 0 \). The significance level is 0.05 (or 5%), meaning there is a 5% chance of rejecting the null hypothesis when it's true.
02

Calculate the test statistic and P-value (Standard deviation 10 degrees)

First the z statistic is calculated using the formula z = (sample mean - population mean) / (standard deviation/√n). Here, the sample mean is 8.82 degrees, population mean is 0 (from null hypothesis), standard deviation is 10 degrees and n=24 (number of samples). Plugging these values, we get z ~ 1.76. Then, the P-value is looked from z table which gives us the probability that z scores will be less than our calculated z value. P-value ~ 0.039.
03

Make decision based on the P-value (Standard deviation 10 degrees)

Since the P-value is less than the significance level (0.039 < 0.05), the null hypothesis is rejected. There is enough evidence to support that the mean wrist extension for mouse type A is greater than mouse type B.
04

Calculate the test statistic and P-value (Standard deviation 26 degrees)

Now we will repeat step 2 but with the new standard deviation of 26 degrees. Again calculating, we get z ~ 0.67. From the z table, P-value ~ 0.252.
05

Make decision based on the P-value (Standard deviation 26 degrees)

Since this time the P-value is greater than the significance level (0.252 > 0.05), we cannot reject the null hypothesis. With this standard deviation, there's not enough evidence to support that the mean wrist extension for mouse type A is greater than mouse type B.
06

Analyze different conclusions in parts (a) and (b)

The reason for different conclusions in these two parts is due to the change in standard deviation. A larger standard deviation implies more variability in data which makes it harder to reject the null hypothesis. In part (a), with a smaller standard deviation, the differences are more concentrated making it easier to reject the null hypothesis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Babies born extremely prematurely run the risk of various neurological problems and tend to have lower IQ and verbal ability scores than babies who are not premature. The article "Premature Babies May Recover Intelligence, Study Says" (San Luis Obispo Tribune, February 12,2003 ) summarized medical research that suggests that the deficit observed at an early age may decrease as children age. Children who were born prematurely were given a test of verbal ability at age 3 and again at age 8 . The test is scaled so that a score of 100 would be average for normal-birth-weight children. Data that are consistent with summary quantities given in the paper for 50 children who were born prematurely were used to generate the accompanying Minitab output, where Age 3 represents the verbal ability score at age 3 and Age8 represents the verbal ability score at age \(8 .\) Use the information in the Minitab output to construct and interpret a \(95 \%\) confidence interval for the change in mean verbal ability score from age 3 to age 8 . You can assume that it is reasonable to regard the sample of 50 children as a random sample from the population of all children born prematurely. Paired T-Test and Cl: Age8, Age3 Paired \(\mathrm{T}\) for Age8 - Age3 \(\begin{array}{lrrrr} & \mathrm{N} & \text { Mean } & \text { StDev } & \text { Se Mean } \\ \text { Age8 } & 50 & 97.21 & 16.97 & 2.40 \\ \text { Age3 } & 50 & 87.30 & 13.84 & 1.96 \\ \text { Difference } & 50 & 9.91 & 22.11 & 3.13\end{array}\)

Do male college students spend more time studying than female college students? This was one of the questions investigated by the authors of the paper "An Ecological Momentary Assessment of the Physical Activity and Sedentary Behaviour Patterns of University Students" (Heath Education Journal \([2010]: 116-125)\). Each student in a random sample of 46 male students at a university in England and each student in a random sample of 38 female students from the same university kept a diary of how he or she spent time over a 3 -week period. For the sample of males, the mean time spent studying per day was 280.0 minutes, and the standard deviation was 160.4 minutes. For the sample of females, the mean time spent studying per day was 184.8 minutes, and the standard deviation was 166.4 minutes. Is there convincing evidence that the mean time male students at this university spend studying is greater than the mean time for female students? Test the appropriate hypotheses using \(\alpha=0.05\).

Descriptions of four studies are given. In each of the studies, the two populations of interest are the students at a particular university who live on campus and the students who live off campus. Which of these studies have samples that are independently selected? Study 1: To determine if there is evidence that the mean amount of money spent on food each month differs for the two populations, a random sample of 45 students who live on campus and a random sample of 50 students who live off campus are selected. Study 2: To determine if the mean number of hours spent studying differs for the two populations, a random sample students who live on campus is selected. Each student in this sample is asked how many hours he or she spend working each week. For each of these students who live on campus, a student who lives off campus and who works the same number of hours per week is identified and included in the sample of students who live off campus. Study 3: To determine if the mean number of hours worked per week differs for the two populations, a random sample of students who live on campus and who have a brother or sister who also attends the university but who lives off campus is selected. The sibling who lives on campus is included in the on campus sample, and the sibling who lives off campus is included in the off- campus sample. Study 4: To determine if the mean amount spent on textbooks differs for the two populations, a random sample of students who live on campus is selected. A separate random sample of the same size is selected from the population of students who live off campus.

In a study of the effect of college student employment on academic performance, the following summary statistics for GPA were reported for a sample of students who worked and for a sample of students who did not work (University of Central Florida Undergraduate Research Journal, Spring 2005\()\) : $$ \begin{array}{cccc} & \begin{array}{c} \text { Sample } \\ \text { Size } \end{array} & \begin{array}{c} \text { Mean } \\ \text { GPA } \end{array} & \begin{array}{c} \text { Sandard } \\ \text { Deviation } \end{array} \\ \begin{array}{c} \text { Students Who Are } \\ \text { Employed } \end{array} & 184 & 3.12 & 0.485 \\ \begin{array}{c} \text { Students Who Are } \\ \text { Not Employed } \end{array} & 114 & 3.23 & 0.524 \\ \hline \end{array} $$ The samples were selected at random from working and nonworking students at the University of Central Florida. Does this information support the hypothesis that for students at this university, those who are not employed have a higher mean GPA than those who are employed?

The paper "Effects of Fast-Food Consumption on Energy Intake and Diet Quality Among Children in a National Household Survey" (Pediatrics [2004]: \(112-118\) ) investigated the effect of fast-food consumption on other dietary variables. For a representative sample of 663 teens who reported that they did not eat fast food during a typical day, the mean daily calorie intake was 2,258 and the sample standard deviation was \(1,519 .\) For a representative sample of 413 teens who reported that they did eat fast food on a typical day, the mean calorie intake was 2,637 and the standard deviation was \(1,138 .\) Use the given information and a \(95 \%\) confidence interval to estimate the difference in mean daily calorie intake for teens who do eat fast food on a typical day and those who do not.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free