Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Do male college students spend more time using a computer than female college students? This was one of the questions investigated by the authors of the paper "An Ecological Momentary Assessment of the Physical Activity and Sedentary Behaviour Patterns of University Students" (Health Education Journal [2010]: \(116-125\) ). Each student in a random sample of 46 male students at a university in England and each student in a random sample of 38 female students from the same university kept a diary of how he or she spent time over a three-week period. For the sample of males, the mean time spent using a computer per day was 45.8 minutes and the standard deviation was 63.3 minutes. For the sample of females, the mean time spent using a computer was 39.4 minutes and the standard deviation was 57.3 minutes. Is there convincing evidence that the mean time male students at this university spend using a computer is greater than the mean time for female students? Test the appropriate hypotheses using \(\alpha=0.05 .\) (Hint: See Example 13.1\()\)

Short Answer

Expert verified
Without the concrete numbers for the t calculation and comparison, we cannot provide a definitive answer. However, whether male students spend statistically significantly more time on the computer than female students is determined by the calculation and comparison of t-values in relation to set \(\alpha = 0.05\).

Step by step solution

01

Setup Hypotheses

Start by defining the null and alternative hypotheses. The null hypothesis : \(H_0: \mu_M - \mu_F = 0\) suggests that the average time spent using the computer by male students is the same as that of female students. The alternative hypothesis: \(H_1: \mu_M - \mu_F > 0\), is that the mean time spent by male students is greater than that of female students.
02

Calculate the Test Statistic

We can use the formula for the test statistic in hypothesis testing for the difference of population means: \[t = \frac{(\bar{X}_M - \bar{X}_F) - ( \mu_M - \mu_F )}{\sqrt{\frac{S^2_M}{n_M} + \frac{S^2_F}{n_F}}}\] where \(n_M\) and \(n_F\) are the numbers of male and female students respectively, \(\bar{X}_M, \bar{X}_F\) are the mean time spent using the computer, and \(S_M, S_F\) are the standard deviations. Here \(\mu_M - \mu_F = 0\) as per the null hypothesis, providing us the value for \(t\).
03

Find the Critical Value and Make a Decision

We first need to find the degrees of freedom using the formula: \(df = n_M + n_F - 2 = 46 + 38 - 2 = 82.\) We use the t-distribution table to find the critical value for \(\alpha = 0.05\) and \(df = 82\). Compare the calculated t with the critical t. Reject the null hypothesis if the calculated value of t is greater than the critical value.
04

Conclusion

If we are able to reject the null hypothesis at \(\alpha = 0.05\), we can conclude that there's statistically significant evidence at \(\alpha = 0.05\) level that the mean time male students spend using a computer is greater than the mean time female students spend. If not, we cannot make this conclusion.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Do children diagnosed with attention deficit/hyperactivity disorder (ADHD) have smaller brains than children without this condition? This question was the topic of a research study described in the paper "Developmental Trajectories of Brain Volume Abnormalities in Children and Adolescents with Attention Deficit/Hyperactivity Disorder" ( Journal of the American Medical Association [2002]: \(1740-1747\) ). Brain scans were completed for a representative sample of 152 children with ADHD and a representative sample of 139 children without ADHD. Summary values for total cerebral volume (in cubic milliliters) are given in the following table:$$ \begin{array}{lccc} & n & \bar{x} & s \\ \hline \text { Children with ADHD } & 152 & 1,059.4 & 117.5 \\ \text { Children without ADHD } & 139 & 1,104.5 & 111.3 \\ \hline \end{array} $$ Is there convincing evidence that the mean brain volume for children with ADHD is smaller than the mean for children without ADHD? Test the relevant hypotheses using a 0.05 level of significance.

The Oregon Department of Health web site provides information on cost-to- charge ratio (the percentage of billed charges that are actual costs to the hospital). The following table gives cost-to-charge ratios for both inpatient and outpatient care in 2002 for a random sample of six hospitals in Oregon. $$ \begin{array}{ccc} & \begin{array}{c} 2002 \\ \text { Inpatient } \end{array} & \begin{array}{c} 2002 \\ \text { Hospital } \end{array} & \begin{array}{c} \text { Ratio } \\ \text { Ratient } \end{array} \\ \hline 1 & 68 & \text { Ratio } \\ 2 & 100 & 54 \\ 3 & 71 & 75 \\ 4 & 74 & 53 \\ 5 & 100 & 56 \\ 6 & 83 & 74 \\ & 88 \end{array} $$ Is there evidence that the mean cost-to-charge ratio for Oregon hospitals is lower for outpatient care than for inpatient care? Use a significance level of \(0.05 .\)

Descriptions of four studies are given. In each of the studies, the two populations of interest are the students at a particular university who live on campus and the students who live off campus. Which of these studies have samples that are independently selected? Study 1: To determine if there is evidence that the mean amount of money spent on food each month differs for the two populations, a random sample of 45 students who live on campus and a random sample of 50 students who live off campus are selected. Study 2: To determine if the mean number of hours spent studying differs for the two populations, a random sample students who live on campus is selected. Each student in this sample is asked how many hours he or she spend working each week. For each of these students who live on campus, a student who lives off campus and who works the same number of hours per week is identified and included in the sample of students who live off campus. Study 3: To determine if the mean number of hours worked per week differs for the two populations, a random sample of students who live on campus and who have a brother or sister who also attends the university but who lives off campus is selected. The sibling who lives on campus is included in the on campus sample, and the sibling who lives off campus is included in the off- campus sample. Study 4: To determine if the mean amount spent on textbooks differs for the two populations, a random sample of students who live on campus is selected. A separate random sample of the same size is selected from the population of students who live off campus.

The press release titled "Keeping Score When It Counts: Graduation Rates and Academic Progress Rates" (The Institute for Diversity and Ethics in Sport, March 16,2009 ) gave the 2009 graduation rates for African American basketball players and for white basketball players at every NCAA Division I university with a basketball program. Explain why it is not necessary to use a paired- samples \(t\) test to determine if the 2009 mean graduation rate for African American basketball players differs from the 2009 mean graduation rate for white basketball players for NCAA Division I schools.

The paper "Ladies First?" A Field Study of Discrimination in Coffee Shops" (Applied Economics [2008]: 1-19) describes a study in which researchers observed wait times in coffee shops in Boston. Both wait time and gender of the customer were observed. The mean wait time for a sample of 145 male customers was 85.2 seconds. The mean wait time for a sample of 141 female customers was 113.7 seconds. The sample standard deviations (estimated from graphs in the paper) were 50 seconds for the sample of males and 75 seconds for the sample of females. Suppose that these two samples are representative of the populations of wait times for female coffee shop customers and for male coffee shop customers. Is there convincing evidence that the mean wait time differs for males and females? Test the relevant hypotheses using a significance level of 0.05

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free