Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Wayne Gretzky was one of ice hockey's most prolific scorers when he played for the Edmonton Oilers. During his last season with the Oilers, Gretzky played in 41 games and missed 17 games due to injury. The article "The Great Gretzky" (Chance [1991]: 16-21) looked at the number of goals scored by the Oilers in games with and without Gretzky, as shown in the accompanying table. If you view the 41 games with Gretzky as a random sample of all Oiler games in which Gretzky played and the 17 games without Gretzky as a random sample of all Oiler games in which Gretzky did not play, is there convincing evidence that the mean number of goals scored by the Oilers is higher for games when Gretzky plays? Use \(\alpha=0.01\). $$ \begin{array}{lccc} & & \text { Sample } & \text { Sample } \\ & n & \text { Mean } & \text { sd } \\ \text { Games with Gretzky } & 41 & 4.73 & 1.29 \\ \text { Games without Gretzky } & 17 & 3.88 & 1.18 \end{array} $$

Short Answer

Expert verified
Cannot provide a short answer since the actual calculations are not performed. However, the process described would result in a determination of statistical significance indicating whether Gretzky's presence has an impact on the number of goals scored.

Step by step solution

01

Identifying Information

Find and list the needed numbers for conducting the t-test. This includes sample sizes, means, and standard deviations for each group. The sample size, mean, and standard deviation for games with Gretzky are 41, 4.73, and 1.29, respectively. Similarly, for games without Gretzky, the sample size, mean, and standard deviation are 17, 3.88, and 1.18 respectively.
02

State the Null and Alternative Hypotheses

The null hypothesis, denoted \(H_0\), is that there's no difference in the mean number of goals scored by the Oilers in games with or without Gretzky. The alternative hypothesis, denoted \(H_1\), is that more goals are scored on average when Gretzky plays.
03

Perform the Two-Sample T-Test

Using these numbers and the formula for the two-sample t-test: \( t = \frac{{M_1 - M_2}}{{\sqrt{\frac{{SD_1^2}}{{n_1}} + \frac{{SD_2^2}}{{n_2}}}}}\) where \(M_1\) and \(M_2\) are the sample means, \(SD_1\) and \(SD_2\) are the sample standard deviations, and \(n_1\) and \(n_2\) are the numbers of observations in the two samples.
04

Finding the p-value

The t-score calculated earlier now has to be compared to a t-distribution to find the p-value. The degrees of freedom for this test are \(n_1 + n_2 - 2\). If this p-value is less than our chosen significance level (0.01), we reject the null hypothesis.
05

Making Conclusion

Based on the p-value and our alpha level, we make a conclusion about our hypotheses. If we reject the null hypothesis, the conclusion would support that Gretzky's presence has an effect on the number of goals scored.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Do girls think they don't need to take as many science classes as boys? The article "Intentions of Young Students to Enroll in Science Courses in the Future: An Examination of Gender Differences" (Science Education [1999]: \(55-76\) ) describes a survey of randomly selected children in grades \(4,5,\) and 6 . The 224 girls participating in the survey each indicated the number of science courses they intended to take in the future, and they also indicated the number of science courses they thought boys their age should take in the future. For each girl, the authors calculated the difference between the number of science classes she intends to take and the number she thinks boys should take. a. Explain why these data are paired. b. The mean of the differences was -0.83 (indicating girls intended, on average, to take fewer science classes than they thought boys should take), and the standard deviation was 1.51 . Construct and interpret a \(95 \%\) confidence interval for the mean difference.

In a study of the effect of college student employment on academic performance, the following summary statistics for GPA were reported for a sample of students who worked and for a sample of students who did not work (University of Central Florida Undergraduate Research Journal, Spring 2005): $$ \begin{array}{cccc} & \begin{array}{c} \text { Sample } \\ \text { Size } \end{array} & \begin{array}{c} \text { Mean } \\ \text { GPA } \end{array} & \begin{array}{c} \text { Standard } \\ \text { Deviation } \end{array} \\ \begin{array}{c} \text { Students Who Are } \\ \text { Employed } \end{array} & 184 & 3.12 & 0.485 \\ \begin{array}{c} \text { Students Who Are } \\ \text { Not Employed } \end{array} & 114 & 3.23 & 0.524 \\ & & & \end{array} $$ The samples were selected at random from working and nonworking students at the University of Central Florida. Estimate the difference in mean GPA for students at this university who are employed and students who are not employed.

Each person in a random sample of 228 male teenagers and a random sample of 306 female teenagers was asked how many hours he or she spent online in a typical week (Ipsos, January 25,2006 ). The sample mean and standard deviation were 15.1 hours and 11.4 hours for the males and 14.1 hours and 11.8 hours for the females. a. The standard deviation for each of the samples is large, indicating a lot of variability in the responses to the question. Explain why it is not reasonable to think that the distribution of responses would be approximately normal for either the population of male teenagers or the population of female teenagers. b. Given your response to Part (a), would it be appropriate to use the two- sample \(t\) test to test the null hypothesis that there is no difference in the mean number of hours spent online in a typical week for male teenagers and female teenagers? Explain why or why not. c. If appropriate, carry out a test to determine if there is convincing evidence that the mean number of hours spent online in a typical week is greater for male teenagers than for female teenagers. Use \(\alpha=0.05\).

Two proposed computer mouse designs were compared by recording wrist extension in degrees for 24 people who each used both mouse designs ("Comparative Study of Two Computer Mouse Designs," Cornell Human Factors Laboratory Technical Report RP7992). The difference in wrist extension was calculated by subtracting extension for mouse type \(\mathrm{B}\) from the wrist extension for mouse type \(\mathrm{A}\) for each person. The mean difference was reported to be 8.82 degrees. Assume that this sample of 24 people is representative of the population of computer users. a. Suppose that the standard deviation of the differences was 10 degrees. Is there convincing evidence that the mean wrist extension for mouse type \(A\) is greater than for mouse type \(\mathrm{B}\) ? Use a 0.05 significance level. b. Suppose that the standard deviation of the differences was 26 degrees. Is there convincing evidence that the mean wrist extension for mouse type \(A\) is greater than for mouse type \(\mathrm{B}\) ? Use a 0.05 significance level. c. Briefly explain why different conclusions were reached in the hypothesis tests of Parts (a) and (b).

An individual can take either a scenic route to work or a nonscenic route. She decides that use of the nonscenic route can be justified only if it reduces the mean travel time by more than 10 minutes. a. If \(\mu_{1}\) refers to the mean travel time for scenic route and \(\mu_{2}\) to the mean travel time for nonscenic route, what hypotheses should be tested? b. If \(\mu_{1}\) refers to the mean travel time for nonscenic route and \(\mu_{2}\) to the mean travel time for scenic route, what hypotheses should be tested?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free