Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Research has shown that, for baseball players, good hip range of motion results in improved performance and decreased body stress. The article "Functional Hip Characteristics of Baseball Pitchers and Position Players" (The American Journal of Sports Medicine, \(2010: 383-388\) ) reported on a study of independent samples of 40 professional pitchers and 40 professional position players. For the pitchers, the sample mean hip range of motion was 75.6 degrees and the sample standard deviation was 5.9 degrees, whereas the sample mean and sample standard deviation for position players were 79.6 degrees and 7.6 degrees, respectively. Assuming that the two samples are representative of professional baseball pitchers and position players, test hypotheses appropriate for determining if mean range of motion for pitchers is less than the mean for position players.

Short Answer

Expert verified
After calculating and comparing the test statistic and critical value, we can make a decision whether to reject or not reject the null hypothesis. This will indicate whether there is a statistically significant difference in mean hip range of motion between pitchers and position players.

Step by step solution

01

State the Hypotheses

The null hypothesis (\(H_0\)) and the alternative hypothesis (\(H_a\)) are defined as follows: \(H_0\): \(\mu_1 - \mu_2 = 0\) (There is no difference in mean range of motion between pitchers and position players). \(H_a\): \(\mu_1 - \mu_2 < 0\) (The mean range of motion for pitchers is less than that for position players). Where, \(\mu_1\) and \(\mu_2\) represent the population means for pitchers and position players, respectively.
02

Compute the Test Statistic

The test statistic for two independent samples is calculated as: \( z = \frac {(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{{s_1}^2}{n_1} + \frac{{s_2}^2}{n_2}}}\) Substituting the given values: \( z = \frac {(75.6 - 79.6) - 0}{\sqrt{\frac{{5.9}^2}{40} + \frac{{7.6}^2}{40}}}\) After calculation, we get the z-score.
03

Determine the Critical Value

Assuming a 0.05 level of significance (typical in social sciences), and because we stated a one-tailed (less than) hypothesis, we refer to the standard normal (Z) distribution table and find that the critical value is -1.645.
04

Make a Decision

We compare the calculated test statistic with the critical value. If the test statistic is less than the critical value, we reject the null hypothesis; otherwise, we do not reject it. This will show whether the mean hip range of motion for pitchers is statistically significantly less than that for position players.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The paper "Effects of Fast-Food Consumption on Energy Intake and Diet Quality Among Children in a National Household Survey" (Pediatrics [2004]: \(112-118\) ) investigated the effect of fast-food consumption on other dietary variables. For a representative sample of 663 teens who reported that they did not eat fast food during a typical day, the mean daily calorie intake was 2,258 and the sample standard deviation was \(1,519 .\) For a representative sample of 413 teens who reported that they did eat fast food on a typical day, the mean calorie intake was 2,637 and the standard deviation was \(1,138 .\) Use the given information and a \(95 \%\) confidence interval to estimate the difference in mean daily calorie intake for teens who do eat fast food on a typical day and those who do not.

The article "More Students Taking AP Tests" (San Luis Obispo Tribune, January 10,2003 ) provided the following information on the percentage of students in grades 11 and 12 taking one or more AP exams and the percentage of exams that earned credit in 1997 and 2002 for seven high schools on the central coast of California. $$ \begin{array}{cccccc} & {\begin{array}{c} \text { Percentage of } \\ \text { Students Taking } \\ \text { One or More } \\ \text { AP Exams } \end{array}} & & {\begin{array}{c} \text { Percentage of } \\ \text { Exams That } \\ \text { Earned College } \end{array}} \\ { 2 - 3 } { 5 - 6 } & & & & {\text { Credit }} \\ { 2 - 3 } { 5 - 6 } \text { School } & 1997 & 2002 & & 1997 & 2002 \\ & 1 & 13.6 & 18.4 & & 61.4 & 52.8 \\ 2 & 20.7 & 25.9 & & 65.3 & 74.5 \\ 3 & 8.9 & 13.7 & & 65.1 & 72.4 \\ 4 & 17.2 & 22.4 & & 65.9 & 61.9 \\ 5 & 18.3 & 43.5 & & 42.3 & 62.7 \\ 6 & 9.8 & 11.4 & & 60.4 & 53.5 \\ 7 & 15.7 & 17.2 & & 42.9 & 62.2 \\ \hline \end{array} $$ a. Assuming that it is reasonable to regard these seven schools as a random sample of high schools located on the central coast of California, carry out an appropriate test to determine if there is convincing evidence that the mean percentage of exams earning college credit at central coast high schools in 1997 and in 2002 were different. b. Do you think it is reasonable to generalize the conclusion of the test in Part (a) to all California high schools? Explain. c. Would it be appropriate to use the paired-samples \(t\) test with the data on percentage of students taking one or more AP exams? Explain.

In the study described in the paper "Exposure to Diesel Exhaust Induces Changes in EEG in Human Volunteers" (Particle and Fibre Toxicology [2007]), 10 healthy men were exposed to diesel exhaust for 1 hour. A measure of brain activity (called median power frequency, or MPF) was recorded at two different locations in the brain both before and after the diesel exhaust exposure. The resulting data are given in the accompanying table. For purposes of this exercise, assume that it is reasonable to regard the sample of 10 men as representative of healthy adult males. $$ \begin{array}{ccccc} &{\mathrm{MPF}(\operatorname{In} \mathrm{Hz})} \\ { 2 - 5 } \text { Subject } & \begin{array}{c} \text { Location 1 } \\ \text { Before } \end{array} & \begin{array}{c} \text { Location 1 } \\ \text { After } \end{array} & \begin{array}{c} \text { Location 2 } \\ \text { Before } \end{array} & \begin{array}{c} \text { Location 2 } \\ \text { After } \end{array} \\ \hline 1 & 6.4 & 8.0 & 6.9 & 9.4 \\ 2 & 8.7 & 12.6 & 9.5 & 11.2 \\ 3 & 7.4 & 8.4 & 6.7 & 10.2 \\ 4 & 8.7 & 9.0 & 9.0 & 9.6 \\ 5 & 9.8 & 8.4 & 9.7 & 9.2 \\ 6 & 8.9 & 11.0 & 9.0 & 11.9 \\ 7 & 9.3 & 14.4 & 7.9 & 9.1 \\ 8 & 7.4 & 11.3 & 8.3 & 9.3 \\ 9 & 6.6 & 7.1 & 7.2 & 8.0 \\ 10 & 8.9 & 11.2 & 7.4 & 9.1 \end{array} $$ Do the data provide convincing evidence that the mean MPF at brain location 1 is higher after diesel exposure than before diesel exposure? Test the relevant hypotheses using a significance level of 0.05 .

Do female college students spend more time watching TV than male college students? This was one of the questions investigated by the authors of the paper "An Ecological Momentary Assessment of the Physical Activity and Sedentary Behaviour Patterns of University Students" (Health Education Journal [2010]: \(116-125\) ). Each student in a random sample of 46 male students at a university in England and each student in a random sample of 38 female students from the same university kept a diary of how he or she spent time over a 3 -week period. For the sample of males, the mean time spent watching TV per day was 68.2 minutes, and the standard deviation was 67.5 minutes. For the sample of females, the mean time spent watching TV per day was 93.5 minutes, and the standard deviation was 89.1 minutes. Is there convincing evidence that the mean time female students at this university spend watching \(\mathrm{TV}\) is greater than the mean time for male students? Test the appropriate hypotheses using \(\alpha=0.05\).

Descriptions of four studies are given. In each of the studies, the two populations of interest are the students at a particular university who live on campus and the students who live off campus. Which of these studies have samples that are independently selected? Study 1: To determine if there is evidence that the mean amount of money spent on food each month differs for the two populations, a random sample of 45 students who live on campus and a random sample of 50 students who live off campus are selected. Study 2: To determine if the mean number of hours spent studying differs for the two populations, a random sample students who live on campus is selected. Each student in this sample is asked how many hours he or she spend working each week. For each of these students who live on campus, a student who lives off campus and who works the same number of hours per week is identified and included in the sample of students who live off campus. Study 3: To determine if the mean number of hours worked per week differs for the two populations, a random sample of students who live on campus and who have a brother or sister who also attends the university but who lives off campus is selected. The sibling who lives on campus is included in the on campus sample, and the sibling who lives off campus is included in the off- campus sample. Study 4: To determine if the mean amount spent on textbooks differs for the two populations, a random sample of students who live on campus is selected. A separate random sample of the same size is selected from the population of students who live off campus.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free