Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Medical research has shown that repeated wrist extension beyond 20 degrees increases the risk of wrist and hand injuries. Each of 24 students at Cornell University used a proposed new computer mouse design, and while using the mouse, each student's wrist extension was recorded. Data consistent with summary values given in the paper "Comparative Study of Two Computer Mouse Designs" (Cornell Human Factors Laboratory Technical Report RP7992) are given. Use these data to test the hypothesis that the mean wrist extension for people using this new mouse design is greater than 20 degrees. Are any assumptions required in order for it to be appropriate to generalize the results of your test to the population of all Cornell students? To the population of all university students? $$ \begin{array}{lllllll} 27 & 28 & 24 & 26 & 27 & 25 & 25 \\ 24 & 24 & 24 & 25 & 28 & 22 & 25 \\ 24 & 28 & 27 & 26 & 31 & 25 & 28 \\ 27 & 27 & 25 & & & & \end{array} $$

Short Answer

Expert verified
The hypothesis can be tested using a one-sample t-test. If the p-value obtained is less than 0.05, the null hypothesis that the mean wrist extension is equal to 20 degrees is rejected in favor of the alternative hypothesis that the mean wrist extension is greater than 20 degrees. Assumptions need to be checked for this test, and generalizing the results to all Cornell students or all university students would require a representative sample.

Step by step solution

01

Compute the Mean

First, compute the sample mean of the wrist extension measurements. This can be found by adding all the measurements together and then dividing by the number of measurements.
02

Compute the Standard Deviation

Next, calculate the sample standard deviation. This is found by taking the square root of the variance, which is the average of squared differences from the mean.
03

Conduct a One-Sample t-test

Now, a one-sample t-test is conducted to test the hypothesis that the mean wrist extension is greater than 20 degrees. The null hypothesis is that the mean is equal to 20 degrees, while the alternative hypothesis is that the mean is greater than 20 degrees. A significance level of 0.05 is typically used.
04

Analyze the Result

If the calculated t-value is greater than the critical t-value at the chosen significance level, then the null hypothesis is rejected. That would suggest that the mean wrist extension is greater than 20 degrees with a 95% confidence.
05

Check Assumptions

Make sure the assumptions for the test are met - data follows a normal distribution or the sample size is large enough (and having no outliers). If these assumptions are not met, the results may not be reliable. To generalize these results to all Cornell students or all university students, the sample would need to be representative of the respective population.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The international polling organization Ipsos reported data from a survey of 2,000 randomly selected Canadians who carry debit cards (Canadian Account Habits Survey, July 24,2006 ). Participants in this survey were asked what they considered the minimum purchase amount for which it would be acceptable to use a debit card. Suppose that the sample mean and standard deviation were \(\$ 9.15\) and \(\$ 7.60\) respectively. (These values are consistent with a histogram of the sample data that appears in the report.) Do the data provide convincing evidence that the mean minimum purchase amount for which Canadians consider the use of a debit card to be acceptable is less than \(\$ 10 ?\) Carry out a hypothesis test with a significance level of 0.01 .

An automobile manufacturer decides to carry out a fuel efficiency test to determine if it can advertise that one of its models achieves \(30 \mathrm{mpg}\) (miles per gallon). Six people each drive a car from Phoenix to Los Angeles. The resulting fuel efficiencies (in miles per gallon) are: 27.2 \(\begin{array}{lllll}29.3 & 31.2 & 28.4 & 30.3 & 29.6\end{array}\) Assuming that fuel efficiency is normally distributed, do these data provide evidence against the claim that actual mean fuel efficiency for this model is (at least) \(30 \mathrm{mpg}\) ?

A study of fast-food intake is described in the paper "What People Buy From Fast-Food Restaurants" (Obesity [2009]:1369- 1374). Adult customers at three hamburger chains (McDonald's, Burger King, and Wendy's) in New York City were approached as they entered the restaurant at lunchtime and asked to provide their receipt when exiting. The receipts were then used to determine what was purchased and the number of calories consumed was determined. In all, 3,857 people participated in the study. The sample mean number of calories consumed was 857 and the sample standard deviation was 677 . a. The sample standard deviation is quite large. What does this tell you about number of calories consumed in a hamburgerchain lunchtime fast-food purchase in New York City? b. Given the values of the sample mean and standard deviation and the fact that the number of calories consumed can't be negative, explain why it is not reasonable to assume that the distribution of calories consumed is normal. c. Based on a recommended daily intake of 2,000 calories, the online Healthy Dining Finder (www.healthydiningfinder .com) recommends a target of 750 calories for lunch. Assuming that it is reasonable to regard the sample of 3,857 fast-food purchases as representative of all hamburger-chain lunchtime purchases in New York City, carry out a hypothesis test to determine if the sample provides convincing evidence that the mean number of calories in a New York City hamburger-chain lunchtime purchase is greater than the lunch recommendation of 750 calories. Use \(\alpha=0.01\). d. Would it be reasonable to generalize the conclusion of the test in Part (c) to the lunchtime fast-food purchases of all adult Americans? Explain why or why not. e. Explain why it is better to use the customer receipt to determine what was ordered rather than just asking a customer leaving the restaurant what he or she purchased.

Suppose that a random sample of 50 bottles of a particular brand of cough medicine is selected, and the alcohol content of each bottle is determined. Let \(\mu\) denote the mean alcohol content for the population of all bottles of this brand. Suppose that this sample of 50 results in a \(95 \%\) confidence interval for \(\mu\) of (7.8,9.4) a. Would a \(90 \%\) confidence interval have been narrower or wider than the given interval? Explain your answer. b. Consider the following statement: There is a \(95 \%\) chance that \(\mu\) is between 7.8 and 9.4 . Is this statement correct? Why or why not? c. Consider the following statement: If the process of selecting a random sample of size 50 and then calculating the corresponding \(95 \%\) confidence interval is repeated 100 times, exactly 95 of the resulting intervals will include \(\mu .\) Is this statement correct? Why or why not?

Suppose that a random sample of size 64 is to be selected from a population with mean 40 and standard deviation 5 . a. What are the mean and standard deviation of the \(\bar{x}\) sampling distribution? Describe the shape of the \(\bar{x}\) sampling distribution. b. What is the approximate probability that \(\bar{x}\) will be within 0.5 of the population mean \(\mu\) ? c. What is the approximate probability that \(\bar{x}\) will differ from \(\mu\) by more than \(0.7 ?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free