Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Explain the difference between \(\mu\) and \(\mu_{\bar{x}}\)

Short Answer

Expert verified
The key difference between \(\mu\) and \(\mu_{\bar{x}}\) is that \(\mu\) is the population mean and \(\mu_{\bar{x}}\) is the mean of sample means. The former represents the average of the entire population, while the latter represents the average of means of various samples.

Step by step solution

01

Define \(\mu\)

\(\mu\) is the symbol used to represent the population mean in statistics. The population mean is the average of a group as a whole. For example, if you want to know the average height of all people in a city, you would calculate the population mean.
02

Define \(\mu_{\bar{x}}\)

\(\mu_{\bar{x}}\) is the symbol used to represent the mean of sample means. It is calculated by taking several samples from a population and finding their means, and then taking the average of those means. This can also be called the expected value of the sample mean.
03

Explain the difference

The main difference between \(\mu\) and \(\mu_{\bar{x}}\) is that \(\mu\) represents the average of all individuals in a population while \(\mu_{\bar{x}}\) represents the average of several sample means taken from the population. \(\mu\) is used when the entire population can be measured. \(\mu_{\bar{x}}\) is used when only samples of the population can be obtained.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Medical research has shown that repeated wrist extension beyond 20 degrees increases the risk of wrist and hand injuries. Each of 24 students at Cornell University used a proposed new computer mouse design, and while using the mouse, each student's wrist extension was recorded. Data consistent with summary values given in the paper "Comparative Study of Two Computer Mouse Designs" (Cornell Human Factors Laboratory Technical Report RP7992) are given. Use these data to test the hypothesis that the mean wrist extension for people using this new mouse design is greater than 20 degrees. Are any assumptions required in order for it to be appropriate to generalize the results of your test to the population of all Cornell students? To the population of all university students? $$ \begin{array}{lllllll} 27 & 28 & 24 & 26 & 27 & 25 & 25 \\ 24 & 24 & 24 & 25 & 28 & 22 & 25 \\ 24 & 28 & 27 & 26 & 31 & 25 & 28 \\ 27 & 27 & 25 & & & & \end{array} $$

Much concern has been expressed regarding the practice of using nitrates as meat preservatives. In one study involving possible effects of these chemicals, bacteria cultures were grown in a medium containing nitrates. The rate of uptake of radio-labeled amino acid was then determined for each culture, yielding the following observations: \(\begin{array}{llllll}7,251 & 6,871 & 9,632 & 6,866 & 9,094 & 5,849 \\ 8,957 & 7,978 & 7,064 & 7,494 & 7,883 & 8,178 \\ 7,523 & 8,724 & 7,468 & & & \end{array}\) Suppose that it is known that the true average uptake for cultures without nitrates is \(8,000 .\) Do these data suggest that the addition of nitrates results in a decrease in the mean uptake? Test the appropriate hypotheses using a significance level of 0.10

Suppose that a random sample of size 64 is to be selected from a population with mean 40 and standard deviation 5 . a. What are the mean and standard deviation of the \(\bar{x}\) sampling distribution? Describe the shape of the \(\bar{x}\) sampling distribution. b. What is the approximate probability that \(\bar{x}\) will be within 0.5 of the population mean \(\mu\) ? c. What is the approximate probability that \(\bar{x}\) will differ from \(\mu\) by more than \(0.7 ?\)

An airplane with room for 100 passengers has a total baggage limit of 6,000 pounds. Suppose that the weight of the baggage checked by an individual passenger, \(x,\) has a mean of 50 pounds and a standard deviation of 20 pounds. If 100 passengers will board a flight, what is the approximate probability that the total weight of their baggage will exceed the limit? (Hint: With \(n=100,\) the total weight exceeds the limit when the mean weight \(\bar{x}\) exceeds \(6,000 / 100 .)\)

Suppose that a random sample of 50 bottles of a particular brand of cough medicine is selected, and the alcohol content of each bottle is determined. Let \(\mu\) denote the mean alcohol content for the population of all bottles of this brand. Suppose that this sample of 50 results in a \(95 \%\) confidence interval for \(\mu\) of (7.8,9.4) a. Would a \(90 \%\) confidence interval have been narrower or wider than the given interval? Explain your answer. b. Consider the following statement: There is a \(95 \%\) chance that \(\mu\) is between 7.8 and 9.4 . Is this statement correct? Why or why not? c. Consider the following statement: If the process of selecting a random sample of size 50 and then calculating the corresponding \(95 \%\) confidence interval is repeated 100 times, exactly 95 of the resulting intervals will include \(\mu .\) Is this statement correct? Why or why not?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free