Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Five students visiting the student health center for a free dental examination during National Dental Hygiene Month were asked how many months had passed since their last visit to a dentist. Their responses were: \(\begin{array}{lllll}6 & 17 & 11 & 22 & 29\end{array}\)

Short Answer

Expert verified
The mean of the data set is given by \( \frac{6 + 17 + 11 + 22 + 29}{5} = 17 \), the median is 17, the range is \(29 - 6 = 23\), and there is no mode as all numbers are unique. Therefore, the mean is 17, the median is 17, the range is 23, and there is no mode.

Step by step solution

01

Calculate the Mean

The mean, or the average, is calculated by adding all numbers in the dataset and then dividing by the amount of numbers. Here, the numbers are 6, 17, 11, 22, and 29. Sum these numbers and divide by 5 (the total number of data points) to find the mean.
02

Determine the Median

Median is the middle value in an ordered set of values. First, we need to arrange the dataset from smallest to largest. Then, as we have 5 elements, the median is the third value (when counting from smallest to greatest). In case of an even number of elements, the median would be the average of the two middle numbers.
03

Find the Range

The range is the difference between the highest and the lowest value in the dataset. Identify the smallest (6) and the largest (29) numbers in the dataset, then subtract the smallest from the largest to find the range.
04

Identify the Mode

The mode is the number that appears most frequently in the dataset. If all numbers appear only once, the dataset has no mode. In this dataset, all numbers appear only once, so there is no mode.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Give as much information as you can about the \(P\) -value of a \(t\) test in each of the following situations: a. Two-tailed test, \(n=16, t=1.6\) b. Upper-tailed test, \(n=14, t=3.2\) c. Lower-tailed test, \(n=20, t=-5.1\) d. Two-tailed test, \(n=16, t=6.3\)

In a study of academic procrastination, the authors of the paper "Correlates and Consequences of Behavioral Procrastination" (Procrastination, Current Issues and New Directions [2000]) reported that for a sample of 411 undergraduate students at a mid-size public university, the mean time spent studying for the final exam in an introductory psychology course was 7.74 hours and the standard deviation of study times was 3.40 hours. Assume that this sample is representative of students taking introductory psychology at this university. Construct a \(95 \%\) confidence interval estimate of \(\mu,\) the mean time spent studying for the introductory psychology final exam. (Hint: See Example 12.7)

A sign in the elevator of a college library indicates a limit of 16 persons. In addition, there is a weight limit of 2,500 pounds. Assume that the average weight of students, faculty, and staff at this college is 150 pounds, that the standard deviation is 27 pounds, and that the distribution of weights of individuals on campus is approximately normal. A random sample of 16 persons from the campus will be selected. a. What is the mean of the sampling distribution of \(\bar{x}\) ? b. What is the standard deviation of the sampling distribution of \(\bar{x} ?\) c. What average weights for a sample of 16 people will result in the total weight exceeding the weight limit of 2,500 pounds? d. What is the probability that a random sample of 16 people will exceed the weight limit?

The Economist collects data each year on the price of a Big Mac in various countries around the world. A sample of McDonald's restaurants in Europe in May 2009 resulted in the following Big Mac prices (after conversion to U.S. dollars): \(\begin{array}{llllllll}3.80 & 5.89 & 4.92 & 3.88 & 2.65 & 5.57 & 6.39 & 3.24\end{array}\) The mean price of a Big Mac in the U.S. in May 2009 was \$3.57. For purposes of this exercise, you can assume it is reasonable to regard the sample as representative of European McDonald's restaurants. Does the sample provide convincing evidence that the mean May 2009 price of a Big Mac in Europe is greater than the reported U.S. price? Test the relevant hypotheses using \(\alpha=0.05 .\) (Hint: See Example 12.12)

The international polling organization Ipsos reported data from a survey of 2,000 randomly selected Canadians who carry debit cards (Canadian Account Habits Survey, July 24,2006 ). Participants in this survey were asked what they considered the minimum purchase amount for which it would be acceptable to use a debit card. Suppose that the sample mean and standard deviation were \(\$ 9.15\) and \(\$ 7.60\) respectively. (These values are consistent with a histogram of the sample data that appears in the report.) Do the data provide convincing evidence that the mean minimum purchase amount for which Canadians consider the use of a debit card to be acceptable is less than \(\$ 10 ?\) Carry out a hypothesis test with a significance level of 0.01 .

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free