Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Because of safety considerations, in May, \(2003,\) the Federal Aviation Administration (FAA) changed its guidelines for how small commuter airlines must estimate passenger weights. Under the old rule, airlines used 180 pounds as a typical passenger weight (including carry-on luggage) in warm months and 185 pounds as a typical weight in cold months. The Alaska Journal of Commerce (May 25,2003\()\) reported that Frontier Airlines conducted a study to estimate mean passenger plus carry-on weights. They found an mean summer weight of 183 pounds and a winter mean of 190 pounds. Suppose that these estimates were based on random samples of 100 passengers and that the sample standard deviations were 20 pounds for the summer weights and 23 pounds for the winter weights. a. Construct and interpret a \(95 \%\) confidence interval for the mean summer weight (including carry-on luggage) of Frontier Airlines passengers. b. Construct and interpret a \(95 \%\) confidence interval for the mean winter weight (including carry-on luggage) of Frontier Airlines passengers. c. The new FAA recommendations are 190 pounds for summer and 195 pounds for winter. Comment on these recommendations in light of the confidence interval estimates from Parts (a) and (b).

Short Answer

Expert verified
The 95% confidence interval for the summer weights is approximately (179.08, 186.92) pounds, and for the winter weights is approximately (185.492, 194.508) pounds. The FAA's recommendation for summer is too high according to our results, but their winter recommendation seems to be acceptable according to our estimation.

Step by step solution

01

Constructing a Confidence Interval for Summer

Step begins with plugging in the given values into the confidence interval formula. For summer weights, the mean, sample size and standard deviation are 183 pounds, 100, and 20 pounds respectively and for a 95% confidence interval, the Z value is 1.96, which can be found by looking up the standard normal distribution. So, the calculation would be: \(183 \pm 1.96 \frac{20}{\sqrt{100}}\) which results in: \(183 \pm 3.92\). Hence, the 95% confidence interval for the summer weights would be (179.08, 186.92) pounds.
02

Constructing a Confidence Interval for Winter

Repeat the same process for winter weights. The given mean, sample size and standard deviation for the winter weights are 190 pounds, 100 and 23 pounds respectively. The calculation would be: \(190 \pm 1.96 \frac{23}{\sqrt{100}}\) which results in: \(190 \pm 4.508\). Hence, the 95% confidence interval for the winter weights would be (185.492, 194.508) pounds.
03

Comparing the Confidence Intervals with FAA Recommendations

Now to comment on the FAA's recommendations in light of the obtained confidence intervals. The FAA's recommendation for summer is 190 pounds, which is clearly not in the confidence interval of summer, (179.08, 186.92) pounds. Therefore, the summer FAA recommendation may be too high. On the contrary, FAA's winter recommendation of 195 pounds is slightly above our winter confidence interval of (185.492, 194.508) pounds, suggesting that this recommendation is acceptable with our result.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

12.56 Speed, size, and strength are thought to be important factors in football performance. The article "Physical and Performance Characteristics of NCAA Division I Football Players" (Research Quarterly for Exercise and Sport [1990]: \(395-401\) ) reported on physical characteristics of Division I starting football players in the 1988 football season. The mean weight of starters on top-20 teams was reported to be \(105 \mathrm{~kg} .\) A random sample of 33 starting players (various positions were represented) from Division I teams that were not ranked in the top 20 resulted in a sample mean weight of \(103.3 \mathrm{~kg}\) and a sample standard deviation of \(16.3 \mathrm{~kg} .\) Is there sufficient evidence to conclude that the mean weight for non-top-20 team starters is less than \(105,\) the known value for top-20 teams?

A credit bureau analysis of undergraduate students credit records found that the average number of credit cards in an undergraduate's wallet was 4.09 ("Undergraduate Students and Credit Cards in 2004," Nellie Mae, May 2005 ). It was also reported that in a random sample of 132 undergraduates, the sample mean number of credit cards that the students said they carried was 2.6 . The sample standard deviation was not reported, but for purposes of this exercise, suppose that it was 1.2 . Is there convincing evidence that the mean number of credit cards that undergraduates report carrying is less than the credit bureau's figure of \(4.09 ?\)

Let \(x\) denote the time (in minutes) that it takes a fifth-grade student to read a certain passage. Suppose that the mean value and standard deviation of the \(x\) distribution are \(\mu=2\) minutes and \(\sigma=0.8\) minutes, respectively. a. If \(\bar{x}\) is the sample mean time for a random sample of \(n=\) 9 students, where is the \(\bar{x}\) distribution centered, and what is the standard deviation of the \(\bar{x}\) distribution? b. Repeat Part (a) for a sample of size of \(n=20\) and again for a sample of size \(n=100\). How do the centers and spreads of the three \(\bar{x}\) distributions compare to one another? Which sample size would be most likely to result in an \(\bar{x}\) value close to \(\mu\), and why?

The paper "The Curious Promiscuity of Queen Honey Bees (Apis mellifera): Evolutionary and Behavioral Mechanisms" (Annals of Zoology [2001]:255-265) describes a study of the mating behavior of queen honeybees. The following quote is from the paper: Queens flew for an average of \(24.2 \pm 9.21\) minutes on their mating flights, which is consistent with previous findings. On those flights, queens effectively mated with \(4.6 \pm 3.47\) males (mean \(\pm \mathrm{SD}\) ). The intervals reported in the quote from the paper were based on data from the mating flights of \(n=30\) queen honeybees. One of the two intervals reported was identified as a \(95 \%\) confidence interval for a population mean. Which interval is this? Justify your choice.

An airplane with room for 100 passengers has a total baggage limit of 6,000 pounds. Suppose that the weight of the baggage checked by an individual passenger, \(x,\) has a mean of 50 pounds and a standard deviation of 20 pounds. If 100 passengers will board a flight, what is the approximate probability that the total weight of their baggage will exceed the limit? (Hint: With \(n=100,\) the total weight exceeds the limit when the mean weight \(\bar{x}\) exceeds \(6,000 / 100 .)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free