Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The paper referenced in the previous exercise also gave the following sample statistics for the percentage of study time that occurred in the 24 hours prior to the final exam: $$ n=411 \quad \bar{x}=43.18 \quad s=21.46 $$ Construct and interpret a \(90 \%\) confidence interval for the mean percentage of study time that occurs in the 24 hours prior to the final exam.

Short Answer

Expert verified
The 90% confidence interval for the mean percentage of study time that occurs in the 24 hours prior to the final exam is (41.415%, 44.945%).

Step by step solution

01

Identify sample statistics

The sample mean (\(\bar{x}\)) is 43.18, the sample standard deviation (s) is 21.46, and the sample size (n) is 411.
02

Find z-score for 90% confidence interval

For a 90% confidence interval, the z-score is 1.645. This value corresponds to the number of standard deviations we must go from the mean to capture 90% of the values in a population, assuming a normal distribution.
03

Calculate margin of error

The margin of error (E) for a confidence interval is calculated using the formula: E = z * (s / sqrt(n)). Substituting the given values into the formula gives: E = 1.645 * (21.46 / sqrt(411)) = 1.765.
04

Construct the confidence interval

The 90% confidence interval is calculated as: \(\bar{x}\) ± E, or 43.18 ± 1.765. So, the interval is (41.415, 44.945).
05

Interpret the confidence interval

The interpretation of this 90% confidence interval is that we are 90% confident that the true mean percentage of study time that occurs in the 24 hours prior to the final exam is between 41.415% and 44.945%.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that a random sample of 50 bottles of a particular brand of cough medicine is selected, and the alcohol content of each bottle is determined. Let \(\mu\) denote the mean alcohol content for the population of all bottles of this brand. Suppose that this sample of 50 results in a \(95 \%\) confidence interval for \(\mu\) of (7.8,9.4) a. Would a \(90 \%\) confidence interval have been narrower or wider than the given interval? Explain your answer. b. Consider the following statement: There is a \(95 \%\) chance that \(\mu\) is between 7.8 and 9.4 . Is this statement correct? Why or why not? c. Consider the following statement: If the process of selecting a random sample of size 50 and then calculating the corresponding \(95 \%\) confidence interval is repeated 100 times, exactly 95 of the resulting intervals will include \(\mu .\) Is this statement correct? Why or why not?

The formula used to calculate a confidence interval for the mean of a normal population is $$ \bar{x} \pm(t \text { critical value }) \frac{s}{\sqrt{n}} $$ What is the appropriate \(t\) critical value for each of the following confidence levels and sample sizes? a. \(95 \%\) confidence, \(n=17\) b. \(99 \%\) confidence, \(n=24\) c. \(90 \%\) confidence, \(n=13\)

Much concern has been expressed regarding the practice of using nitrates as meat preservatives. In one study involving possible effects of these chemicals, bacteria cultures were grown in a medium containing nitrates. The rate of uptake of radio-labeled amino acid was then determined for each culture, yielding the following observations: \(\begin{array}{llllll}7,251 & 6,871 & 9,632 & 6,866 & 9,094 & 5,849 \\ 8,957 & 7,978 & 7,064 & 7,494 & 7,883 & 8,178 \\ 7,523 & 8,724 & 7,468 & & & \end{array}\) Suppose that it is known that the true average uptake for cultures without nitrates is \(8,000 .\) Do these data suggest that the addition of nitrates results in a decrease in the mean uptake? Test the appropriate hypotheses using a significance level of 0.10

Seventy-seven students at the University of Virginia were asked to keep a diary of a conversation with their mothers, recording any lies they told during this conversation (San Luis Obispo Telegram-Tribune, August 16, 1995). The mean number of lies per conversation was 0.5 . Suppose that the standard deviation (which was not reported) was 0.4 a. Suppose that this group of 77 is representative of the population of students at this university. Construct a \(95 \%\) confidence interval for the mean number of lies per conversation for this population. b. The interval in Part (a) does not include \(0 .\) Does this imply that all students lie to their mothers? Explain.

Fat contents (in grams) for seven randomly selected hot dogs rated as very good by Consumer Reports (www .consumerreports.org) are shown. Is it reasonable to use these data and the \(t\) confidence interval of this section to construct a confidence interval for the mean fat content of hot dogs rated very good by Consumer Reports? Explain why or why not. \(\begin{array}{lllllll}14 & 15 & 11 & 10 & 6 & 15 & 16\end{array}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free