Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The formula used to calculate a confidence interval for the mean of a normal population is $$ \bar{x} \pm(t \text { critical value }) \frac{s}{\sqrt{n}} $$ What is the appropriate \(t\) critical value for each of the following confidence levels and sample sizes? a. \(95 \%\) confidence, \(n=17\) b. \(99 \%\) confidence, \(n=24\) c. \(90 \%\) confidence, \(n=13\)

Short Answer

Expert verified
The t critical value for 95% confidence level and sample size 17 is \(2.12\), for 99% confidence level and sample size 24 is \(2.807\), and for 90% confidence level and sample size 13 is \(1.782\).

Step by step solution

01

Confidence Level 95%, Sample Size 17

Find the t critical value for 95% confidence level and sample size 17. The degrees of freedom is \(n-1 = 17 - 1 = 16\). If you check the t-distribution chart or use t-distribution calculator, the t critical value is roughly \(2.12\).
02

Confidence Level 99%, Sample Size 24

Find the t critical value for 99% confidence level and sample size 24. The degrees of freedom is \(n-1 = 24 - 1 = 23\). If you check the t-distribution chart or use t-distribution calculator, the t critical value is roughly \(2.807\).
03

Confidence Level 90%, Sample Size 13

Find the t critical value for 90% confidence level and sample size 13. The degrees of freedom is \(n-1 = 13 - 1 = 12\). If you check the t-distribution chart or use t-distribution calculator, the t critical value is roughly \(1.782\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The article "Most Canadians Plan to Buy Treats, Many Will Buy Pumpkins, Decorations and/or Costumes" (Ipsos-Reid, October 24,2005\()\) summarized a survey of 1,000 randomly selected Canadian residents. Each individual in the sample was asked how much he or she anticipated spending on Halloween. The resulting sample mean and standard deviation were \(\$ 46.65\) and \(\$ 83.70\), respectively. a. Explain how it could be possible for the standard deviation of the anticipated Halloween expense to be larger than the mean anticipated expense. b. Is it reasonable to think that the distribution of anticipated Halloween expense is approximately normal? Explain why or why not. c. Is it appropriate to use the one-sample \(t\) confidence interval to estimate the mean anticipated Halloween expense for Canadian residents? Explain why or why not. d. If appropriate, construct and interpret a \(99 \%\) confidence interval for the mean anticipated Halloween expense for Canadian residents.

In June, 2009 , Harris Interactive conducted its Great Schools Survey. In this survey, the sample consisted of 1,086 adults who were parents of school-aged children. The sample was selected to be representative of the population of parents of school-aged children. One question on the survey asked respondents how much time per month (in hours) they spent volunteering at their children's school during the previous school year. The following summary statistics for time volunteered per month were given: \(n=1086 \quad \bar{x}=5.6 \quad\) median \(=1\) a. What does the fact that the mean is so much larger than the median tell you about the distribution of time spent volunteering at school per month? b. Based on your answer to Part (a), explain why it is not reasonable to assume that the population distribution of time spent volunteering is approximately normal. c. Explain why it is appropriate to use the one-sample \(t\) confidence interval to estimate the mean time spent volunteering for the population of parents of school-aged children even though the population distribution is not approximately normal. d. Suppose that the sample standard deviation was \(s=5.2\). Use the five-step process for estimation problems \(\left(\mathrm{EMC}^{3}\right)\) to calculate and interpret a \(98 \%\) confidence interval for \(\mu,\) the mean time spent volunteering for the population of parents of school-aged children. (Hint: See Example 12.7)

A hot tub manufacturer advertises that a water temperature of \(100^{\circ} \mathrm{F}\) can be achieved in 15 minutes or less. A random sample of 25 tubs is selected, and the time necessary to achieve a \(100^{\circ} \mathrm{F}\) temperature is determined for each tub. The sample mean time and sample standard deviation are 17.5 minutes and 2.2 minutes, respectively. Does this information cast doubt on the company's claim? Carry out a test of hypotheses using significance level \(0.05 .\)

In a study of academic procrastination, the authors of the paper "Correlates and Consequences of Behavioral Procrastination" (Procrastination, Current Issues and New Directions [2000]) reported that for a sample of 411 undergraduate students at a mid-size public university, the mean time spent studying for the final exam in an introductory psychology course was 7.74 hours and the standard deviation of study times was 3.40 hours. Assume that this sample is representative of students taking introductory psychology at this university. Construct a \(95 \%\) confidence interval estimate of \(\mu,\) the mean time spent studying for the introductory psychology final exam. (Hint: See Example 12.7)

What percentage of the time will a variable that has a \(t\) distribution with the specified degrees of freedom fall in the indicated region? (Hint: See discussion on page 496 ) a. 10 df, between -1.81 and 1.81 b. 24 df, between -2.06 and 2.06 c. 24 df, outside the interval from -2.80 to 2.80 d. 10 df, to the left of -1.81

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free