Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What percentage of the time will a variable that has a \(t\) distribution with the specified degrees of freedom fall in the indicated region? (Hint: See discussion on page 496 ) a. 10 df, between -1.81 and 1.81 b. 24 df, between -2.06 and 2.06 c. 24 df, outside the interval from -2.80 to 2.80 d. 10 df, to the left of -1.81

Short Answer

Expert verified
a. Approximately 90%, b. Approximately 95%, c. 1%, d. 5%

Step by step solution

01

Understanding the Question

Recognition of the problem as one being about the t-distribution is important. The t-distribution is used to calculate probabilities when the sample size is small (generally under 30). The exercise asks for the percentage of time a variable (for example, a test statistic) will fall within a certain range. This percentage can be found by finding the area under the t-distribution curve that corresponds to that range.
02

Using the t-Distribution Table

For each scenario, check the row corresponding to the given degrees of freedom on your t-Distribution table. For a and b, find the number in the row that is closest to 1.81 and 2.06 respectively, and read off the associated probability. This represents the percentage of the time that a randomly selected value will fall between -1.81 and 1.81 or -2.06 and 2.06. For c and d, since the interval is outside a range or to the left of a value, the probabilities need to be subtracted from 1.
03

Apply the Values

a. For 10 df and the value of 1.81, the percentage of time between -1.81 and 1.81 is almost 90%. \n\nb. For 24 df and the value of 2.06, the percentage of time between -2.06 and 2.06 is approximately 95%. \n\nc. For 24 df and the value of 2.80, the percentage of time outside of this interval is 1 - 0.99 = 0.01 or 1%. \n\nd. For 10 df and the value of -1.81, the percentage of the time to the left of -1.81 is 5%.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A credit bureau analysis of undergraduate students credit records found that the average number of credit cards in an undergraduate's wallet was 4.09 ("Undergraduate Students and Credit Cards in 2004," Nellie Mae, May 2005 ). It was also reported that in a random sample of 132 undergraduates, the sample mean number of credit cards that the students said they carried was 2.6 . The sample standard deviation was not reported, but for purposes of this exercise, suppose that it was 1.2 . Is there convincing evidence that the mean number of credit cards that undergraduates report carrying is less than the credit bureau's figure of \(4.09 ?\)

The article "Most Canadians Plan to Buy Treats, Many Will Buy Pumpkins, Decorations and/or Costumes" (Ipsos-Reid, October 24,2005\()\) summarized a survey of 1,000 randomly selected Canadian residents. Each individual in the sample was asked how much he or she anticipated spending on Halloween. The resulting sample mean and standard deviation were \(\$ 46.65\) and \(\$ 83.70\), respectively. a. Explain how it could be possible for the standard deviation of the anticipated Halloween expense to be larger than the mean anticipated expense. b. Is it reasonable to think that the distribution of anticipated Halloween expense is approximately normal? Explain why or why not. c. Is it appropriate to use the one-sample \(t\) confidence interval to estimate the mean anticipated Halloween expense for Canadian residents? Explain why or why not. d. If appropriate, construct and interpret a \(99 \%\) confidence interval for the mean anticipated Halloween expense for Canadian residents.

An article titled "Teen Boys Forget Whatever It Was" appeared in the Australian newspaper The Mercury (April 21, 1997). It described a study of academic performance and attention span and reported that the mean time to distraction for teenage boys working on an independent task was 4 minutes. Although the sample size was not given in the article, suppose that this mean was based on a random sample of 50 teenage boys and that the sample standard deviation was 1.4 minutes. Is there convincing evidence that the average attention span for teenage boys is less than 5 minutes? Test the relevant hypotheses using \(\alpha=0.01\).

The formula used to calculate a confidence interval for the mean of a normal population is $$ \bar{x} \pm(t \text { critical value }) \frac{s}{\sqrt{n}} $$ What is the appropriate \(t\) critical value for each of the following confidence levels and sample sizes? a. \(95 \%\) confidence, \(n=17\) b. \(99 \%\) confidence, \(n=24\) c. \(90 \%\) confidence, \(n=13\)

Much concern has been expressed regarding the practice of using nitrates as meat preservatives. In one study involving possible effects of these chemicals, bacteria cultures were grown in a medium containing nitrates. The rate of uptake of radio-labeled amino acid was then determined for each culture, yielding the following observations: \(\begin{array}{llllll}7,251 & 6,871 & 9,632 & 6,866 & 9,094 & 5,849 \\ 8,957 & 7,978 & 7,064 & 7,494 & 7,883 & 8,178 \\ 7,523 & 8,724 & 7,468 & & & \end{array}\) Suppose that it is known that the true average uptake for cultures without nitrates is \(8,000 .\) Do these data suggest that the addition of nitrates results in a decrease in the mean uptake? Test the appropriate hypotheses using a significance level of 0.10

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free