Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A random sample is selected from a population with mean \(\mu=200\) and standard deviation \(\sigma=15 .\) Determine the mean and standard deviation of the \(\bar{x}\) sampling distribution for each of the following sample sizes: a. \(n=12\) d. \(n=40\) b. \(n=20\) e. \(n=90\) c. \(n=25\) f. \(n=300\)

Short Answer

Expert verified
The mean of the sampling distribution for all sample sizes is 200. The standard deviations are 15/\(\sqrt{12}\), 15/\(\sqrt{40}\), 15/\(\sqrt{20}\), 15/\(\sqrt{90}\), 15/\(\sqrt{25}\), and 15/\(\sqrt{300}\) respectively.

Step by step solution

01

Calculate the mean of the sampling distribution

As stated, the mean of the sampling distribution is equal to the mean of the population. Therefore, for all the given sample sizes (n), the mean, \(\mu_{\bar{x}}\) = \(\mu\) = 200.
02

Calculate the standard deviation for sample size \(n=12\)

The standard error is calculated using the formula \(\sigma_{\bar{x}} = \sigma/\sqrt{n}\). Substituting the given values, \(\sigma_{\bar{x}}\) = 15/\(\sqrt{12}\).
03

Calculate the standard deviation for the remaining sample sizes

Similarly, we can calculate the standard error for all sample sizes, with sample sizes \(n=40, 20, 90, 25,\) and \(300\), by substituting these values in the standard deviation formula.
04

Summary of results

We have now calculated the mean and standard deviation of the sampling distribution for each of the given sample sizes. The mean is constant at 200, and the standard deviations are calculated using the standard error formula for each sample size.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Fat contents (in grams) for seven randomly selected hot dogs rated as very good by Consumer Reports (www .consumerreports.org) are shown. Is it reasonable to use these data and the \(t\) confidence interval of this section to construct a confidence interval for the mean fat content of hot dogs rated very good by Consumer Reports? Explain why or why not. \(\begin{array}{lllllll}14 & 15 & 11 & 10 & 6 & 15 & 16\end{array}\)

Give as much information as you can about the \(P\) -value of a \(t\) test in each of the following situations: a. Two-tailed test, \(n=16, t=1.6\) b. Upper-tailed test, \(n=14, t=3.2\) c. Lower-tailed test, \(n=20, t=-5.1\) d. Two-tailed test, \(n=16, t=6.3\)

The eating habits of 12 bats were examined in the article "Foraging Behavior of the Indian False Vampire Bat" (Biotropica [1991]: \(63-67)\). These bats consume insects and frogs. For these 12 bats, the mean time to consume a frog was \(\bar{x}=21.9\) minutes. Suppose that the standard deviation was \(s=7.7\) minutes. Is there convincing evidence that the mean supper time of a vampire bat whose meal consists of a frog is greater than 20 minutes? What assumptions must be reasonable for the one-sample \(t\) test to be appropriate?

Suppose that a random sample of 50 bottles of a particular brand of cough medicine is selected, and the alcohol content of each bottle is determined. Let \(\mu\) denote the mean alcohol content for the population of all bottles of this brand. Suppose that this sample of 50 results in a \(95 \%\) confidence interval for \(\mu\) of (7.8,9.4) a. Would a \(90 \%\) confidence interval have been narrower or wider than the given interval? Explain your answer. b. Consider the following statement: There is a \(95 \%\) chance that \(\mu\) is between 7.8 and 9.4 . Is this statement correct? Why or why not? c. Consider the following statement: If the process of selecting a random sample of size 50 and then calculating the corresponding \(95 \%\) confidence interval is repeated 100 times, exactly 95 of the resulting intervals will include \(\mu .\) Is this statement correct? Why or why not?

The authors of the paper "Short-Term Health and Economic Benefits of Smoking Cessation: Low Birth Weight" (Pediatrics [1999]:1312-1320) investigated the medical cost associated with babies born to mothers who smoke. The paper included estimates of mean medical cost for low-birth-weight babies for different ethnic groups. For a sample of 654 Hispanic low-birth-weight babies, the mean medical cost was \(\$ 55,007\) and the standard error \((s / \sqrt{n})\) was \(\$ 3011\). For a sample of 13 Native American low-birth-weight babies, the mean and standard error were \(\$ 73,418\) and \(\$ 29,577,\) respectively. Explain why the two standard errors are so different.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free