Chapter 10: Problem 1
Explain why the statement \(\hat{p}=0.40\) is not a legitimate hypothesis.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 10: Problem 1
Explain why the statement \(\hat{p}=0.40\) is not a legitimate hypothesis.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose that for a particular hypothesis test, the consequences of a Type I error are very serious. Would you want to carry out the test using a small significance level \(\alpha\) (such as 0.01 ) or a larger significance level (such as 0.10 )? Explain the reason for your choice.
A county commissioner must vote on a resolution that would commit substantial resources to the construction of a sewer in an outlying residential area. Her fiscal decisions have been criticized in the past, so she decides to take a survey of residents in her district to find out if they favor spending money for a sewer system. She will vote to appropriate funds only if she can be reasonably sure that a majority of the people in her district favor the measure. What hypotheses should she test?
USA Today (Feb. 17, 2011) described a survey of 1,008 American adults. One question on the survey asked people if they had ever sent a love letter using e-mail. Suppose that this survey used a random sample of adults and that you want to decide if there is evidence that more than \(20 \%\) of American adults have written a love letter using e-mail. a. Describe the shape, center, and spread of the sampling distribution of \(\hat{p}\) for random samples of size 1,008 if the null hypothesis \(H_{0}: p=0.20\) is true. b. Based on your answer to Part (a), what sample proportion values would convince you that more than \(20 \%\) of adults have sent a love letter via e-mail?
Step 5 of the five-step process for hypothesis testing is communication of results. What is involved in completing this step?
The paper "I Smoke but I Am Not a Smoker" (Journal of American College Health [2010]: 117-125) describes a survey of 899 college students who were asked about their smoking behavior. Of the students surveyed, 268 classified themselves as nonsmokers, but said yes when asked later in the survey if they smoked. These students were classified as "phantom smokers," meaning that they did not view themselves as smokers even though they do smoke at times. The authors were interested in using these data to determine if there is convincing evidence that more than \(25 \%\) of college students fall into the phantom smoker category.
What do you think about this solution?
We value your feedback to improve our textbook solutions.